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Polyphase matrix extension of the scaling vector functions plays an important role in the construction of
compactly supported biorthogonal multiwavelets. However, the involved computations are very compli-
cated, and there is no unified, direct formula available so far. In this paper, abstract algebraic methods are
used to investigate the canonical forms of polyphase matrices of the scaling vector functions. According
to the related properties of canonical forms of polyphase matrices, it is proved that the matrix extension
equations are always solvable so that two explicit formula groups of the solution set corresponding to
different canonical forms can be derived. All the explicit formulas are represented via the submatrices
of polyphase matrices directly. Furthermore, for a given matrix extension problem, any solution can be
obtained from these explicit formulas via product-preserving transformations, which means that, the pro-
posed algorithm provides a complete solution set. Computational examples demonstrated that by using
the explicit formulas, our matrix extension algorithm is direct and effective. Finally, a simple application
by using multiwavelets for denoising is presented and the experimental results showed that the multi-
wavelets outperformed the scalar wavelets under different test signals.
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EXPLICIT CONSTRUCTION OF BIORTHOGONAL MULTIWAVELETS 503

1. Introduction

Multiwavelets have been widely used in many applications such as denoising, image compression,
prediction, watermarking and so on since they have a number of advantages over scalar wavelets. The
main motivation of employing multiwavelets is that several desirable properties, such as orthogonality,
symmetry and short support for a given vanishing moment, can be made full use of simultaneously in
the applications. But these properties cannot be shared by the scalar wavelets except the Haar wavelet.
However, the Haar wavelet suffers from a major disadvantage, the discontinuity in the spatial domain.
Symmetry means that the filter bank can possess linear phase. In signal processing, a filter delays dif-
ferent frequency components of a signal by the same amount if the filter has linear phase (constant
phase delay). In image processing, filters with non-linear phase can introduce artefacts that are visu-
ally annoying. The width of the supports of the filters is proportional to the number of high-amplitude
wavelet coefficients created by a brutal transition, such as an edge. For a more accurate localization
of singularities, the number of high-amplitude wavelet coefficients should be as small as possible. So
the supports of the filters should be as short as possible. Moreover, the more the vanishing moments,
the smaller are the coefficients that can be produced over smooth regions at fine scales. Therefore, the
multiwavelet coefficients that belong to the noise components can be more easily distinguished at fine
scales.

Multiwavelets have raised great interest among the research community and have been investi-
gated intensively by scientists in the past couple of decades. The study of multiwavelets was first ini-
tiated by Goodman et al. (1990), and one of the earliest and most widely used multiwavelets is the
so-called GHM multiwavelet (because it was constructed by Geronimo, Hardin and Massopust) see
Geronimo et al. (1994); see also Donovan et al. (1996) by using the fractal interpolation method.
By imposing the Hermite interpolation conditions, Chui & Lian (1996) constructed symmetric–
antisymmetric orthonormal multiwavelets with a particular emphasis on the maximum number of van-
ishing moments. Then, a new method was developed to construct the orthogonal and biorthogonal multi-
wavelets via matrix extension (see Lawton et al., 1996; Goh & Yap, 1998). By using paraunitary matrix
extension, Lawton et al. (1996) proposed a construction method for orthogonal multiwavelets, and the
basic idea was then extended to the construction of biorthogonal multiwavelets proposed by Goh & Yap
(1998).

This paper focuses on the construction of biorthogonal multiwavelets. It is well known that there are
explicit formulas for the construction of biorthogonal uniwavelets (i.e. scalar wavelets) (see Daubechies,
1992): if pk and p̃k are the low-pass filters corresponding to a pair of biorthogonal uniscaling func-
tions φ(x) and φ̃(x), respectively, then the associated high-pass filters qk and q̃k corresponding to the
uniwavelets ψ(x) and ψ̃(x), respectively, can be obtained via the following: qk = (−1)k−1p̃1−k and
q̃k = (−1)k−1p1−k . However, there are no such explicit relationships for the construction of biorthogonal
multiwavelets. In this paper, an abstract algebraic approach for polyphase matrix extension is proposed
to construct the compactly supported biorthogonal multiwavelets without any constraints. Specifically,
the following properties hold.

(1) The canonical forms of polyphase matrices of the scaling vector functions are studied by using
abstract algebraic method. It is proved that the polyphase matrices of the scaling vector functions
for any compactly supported biorthogonal multiwavelets can be converted into canonical forms
through finite steps of column–row product-preserving transformations.

(2) For the matrix extension problem, two solution sets with explicit formulas corresponding to
different canonical forms are provided (Tables 1 and 2). They are represented by the submatrices
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504 Y.-G. CEN ET AL.

of the scaling polyphase matrices directly. Furthermore, since the extension result is not unique,
we proved that any extension solution can be obtained from the explicit formulas given in Table 1
or 2 via finite steps of the product-preserving transformations.

(3) For some extension problems, if there are several expression sets of the solutions, appropriate
selection of formulas can further decrease the computational cost to obtain the desired extension
forms.

In order to further validate the proposed method, four examples were provided at the end of the paper
and the experimental results demonstrated that our approach obtained the same results as those provided
in Goh & Yap (1998), Strela & Walden (1998), Hardin & Marasovich (1999) and Tan et al. (1999).
A denoising experiment was also given to test the constructed biorthogonal multiwavelets in this paper,
and the result showed that multiwavelets generally outperformed scalar wavelets. The matrix extension
problem of the compactly supported biorthogonal multiwavelets was first reviewed as follows.

Let Φ(x)= (φ1(x),φ2(x), . . . ,φp(x))� and Φ̃(x)= (φ̃1(x), φ̃2(x), . . . , φ̃p(x))� be the two vector
functions satisfying the matrix dilation equations Φ(x)=∑k∈Z H(k)Φ(2x − k) and Φ̃(x)=∑

k∈Z H̃(k)Φ̃(2x − k), respectively. Here, H(k) and H̃(k) are finite two-scale matrix coefficients,
which entries are real-valued numbers. We denote by Z the set composed of all integers. Suppose
that subspaces {Vj}j∈Z and {Ṽj}j∈Z establish two multiresolution analyses with multiplicity p in L2(R),
where Vj = span{2j/2φi(2j · −k), 1 � i � p, k ∈ Z} and Ṽj = span{2j/2φ̃i(2j · −k), 1 � i � p, k ∈ Z}. Note
that Φ(x) and Φ̃(x) are a pair of compactly supported biorthogonal scaling vector functions if they
satisfy the biorthogonality condition

〈Φ(·), Φ̃(· − n)〉 = δ0,nIp×p,

where 〈·, ·〉 denotes the inner product, Ip×p is the identity matrix and δi,j is the Kronecker delta, i.e.

δi,j =
{

1 if i = j,

0 if i |= j.

Suppose that the vector-valued functions Ψ = (ψ1,ψ2, . . . ,ψp)
� and Ψ̃ = (ψ̃1, ψ̃2, . . . , ψ̃p)

� satisfy
the dilation equations Ψ (x)=∑k∈Z G(k)Φ(2x − k) and Ψ̃ (x)=∑k∈Z G̃(k)Φ̃(2x − k), where G(k) and
G̃(k) are finite real-valued matrix coefficients. Define Wj = span{2j/2ψi(2j · −k), 1 � i � p, k ∈ Z} and
W̃j = span{2j/2ψ̃i(2j · −k), 1 � i � p, k ∈ Z} such that Wj and W̃j, j ∈ Z are the complementary subspaces
of Vj and Ṽj in Vj+1 and Ṽj+1, respectively. Then Ψ (x) and Ψ̃ (x) are a pair of compactly supported
biorthogonal multiwavelets associated with the scaling vector functions Φ(x) and Φ̃(x), if they satisfy
the following biorthogonality conditions:{

〈Φ(·), Ψ̃ (· − n)〉 = 〈Ψ (·), Φ̃(· − n)〉 = 0,

〈Ψ (·), Ψ̃ (· − n)〉 = δ0,nIp×p.

Define two p × p matrices He(z) and Ho(z) as

He(z)= 1√
2

∑
k∈Z

H(2k)zk and Ho(z)= 1√
2

∑
k∈Z

H(2k + 1)zk ,
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EXPLICIT CONSTRUCTION OF BIORTHOGONAL MULTIWAVELETS 505

where z ∈ {z : |z| = 1} (the unit circle in the complex plane). The polyphase matrix of Φ(x) is then
defined as H(z)= (He(z) Ho(z))p×2p. Likewise, H̃(z)= (H̃e(z) H̃o(z))p×2p, G(z)= (Ge(z) Go(z))p×2p

and G̃(z)= (G̃e(z) G̃o(z))p×2p are the polyphase matrices of Φ̃(x), Ψ (x) and Ψ̃ (x), respectively. Let
R[z] be a set consisting of all real-coefficient Laurent polynomials in z ∈ T . Under the ordinary addition
and multiplication of Laurent polynomials, R[z] is a ring. It can be verified that the polyphase matrices
H(z), H̃(z), G(z) and G̃(z) are all matrices over R[z].

From the biorthogonality conditions of Φ(x), Φ̃(x), Ψ (x) and Ψ̃ (x), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

He(z)H̃e(z)∗ + Ho(z)H̃o(z)∗ = Ip×p,

He(z)G̃e(z)∗ + Ho(z)G̃o(z)∗ = Op×p,

Ge(z)H̃e(z)∗ + Go(z)H̃o(z)∗ = Op×p,

Ge(z)G̃e(z)∗ + Go(z)G̃o(z)∗ = Ip×p,

where Op×p denotes the p × p zero matrix and the superscript ∗ denotes the complex-conjugate trans-
pose. Equivalently,

Q(z)Q̃(z)∗ =
(

He(z) Ho(z)

Ge(z) Go(z)

)
2p×2p

(
H̃e(z)∗ G̃e(z)∗

H̃o(z)∗ G̃o(z)∗

)
2p×2p

= I2p×2p.

In this paper, we concentrate on the following matrix extension problem. For a given pair of
compactly supported biorthogonal scaling vector functions Φ(x) and Φ̃(x) with polyphase matrices
satisfying H(z)H̃(z)∗ = Ip×p, H(z) and H̃(z) are needed to be extended to two 2p × 2p unimodular
matrices (invertible matrices) Q(z) and Q̃(z) over R[z] satisfying Q(z)Q̃(z)∗ = I2p×2p, such that the first
p rows of Q(z) and those of Q̃(z) are the matrices H(z) and H̃(z), respectively. One way to tackle this
problem is to solve Ge(z), Go(z), G̃e(z)∗ and G̃o(z)∗ from the matrix equation Q(z)Q̃(z)∗ = I2p×2p, which
is investigated in this paper.

The rest of this paper is organized as follows. Section 2 provides a brief introduction of abstract
algebra including the unimodular matrix over R[z], elementary transformations, product-preserving
transformations and the normal form of an m × n matrix over a Euclidean ring. In Section 3, we
prove that, for any polyphase matrices H(z)p×2p and H̃(z)∗2p×p, rank H(z)= rank H̃(z)∗ = p, they can
be transformed into a canonical form by finite steps of product-preserving transformations. This is a
fundamental result for the proposed matrix extension algorithm. Section 4 gives explicit formulas for
computing the polyphase matrices G(z) and G̃(z)∗ via the corresponding polyphase matrices H(z) and
H̃(z)∗. The general algorithm for constructing the compactly supported biorthogonal multiwavelets is
then proposed. In Section 5, three examples are given to demonstrate that the proposed method can
obtain the same results as those presented in Goh & Yap (1998), Strela & Walden (1998) and Hardin &
Marasovich (1999). Section 6 concludes this paper.

2. Unimodular matrices over R[z] and product-preserving transformation

The main idea of the proposed matrix extension approach is to solve the polyphase matrices Ge(z),
Go(z), G̃e(z)∗ and G̃o(z)∗ over R[z] based on the identity Q(z)Q̃(z)∗ = I2p×2p. Thus, it is inevitable
to deal with the inverse of a matrix over R[z], i.e. we need to investigate the unimodular matrix
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(invertible matrix) over R[z]. On the other hand, an important tool used in the proposed approach is
the so-called product-preserving transformation, which ensures that we can modify the extension resul-
tant matrices to obtain the desired forms for a particular application. So, this section will mainly discuss
these two problems and related backgrounds.

The Laurent polynomial ring R[z] has the following basic properties (see Jacobson, 1974,
pp. 141–143):

(1) R[z] is a commutative ring with the identity 1.

(2) All the polynomials in z form a Euclidean subring of R[z], denoted as P[z], under the ordinary
addition and multiplication operations on R[z].

(3) An element a(z) ∈ R[z] is called invertible if 1/a(z) ∈ R[z]. Moreover, a(z) is an invertible ele-
ment of R[z], if, and only if, a(z)= czk , where c ∈ R and c |= 0, k ∈ Z, z ∈ T . An invertible element
of R[z] is also called a unit.

Proof. From the definition of R[z], Properties (1) and (2) can be verified. Here, only the proof of
Property (3) is given as follows.

If ∀ a(z) ∈ R[z] and a(z) |= 0, then a(z) can be expressed as
∑N2

i=N1
aizi, where i = N1, . . . , N2 and

N1, N2 ∈ Z. Thus, 1/a(z)= 1/(
∑N2

i=N1
aizi). Obviously, 1/a(z) remains to be a Laurent polynomial, if

and only if,
∑N2

i=N1
aizi is a non-zero monomial in z (or z̄ = 1/z). Otherwise, if a(z)=∑N2

i=N1
aizi and

a(z) |= czk (where c ∈ R but c |= 0, k ∈ Z, z ∈ T), then 1/a(z) is only an element in the quotient field of
R[z] (i.e. the field of fractions on R[z]). �

Because the entries in the polyphase matrices are Laurent polynomials according to the definition
of polyphase matrices in Section 1, it is necessary to investigate such kind of matrices with Laurent
polynomial entries.

Definition 2.1 A(z)= (aij(z))m×n is called a matrix over R[z] if all its entries lie in R[z], i.e. every entry
aij(z) of A(z) is a Laurent polynomial in z ∈ T . The set composed of all such m × n matrices over R[z] is
denoted by Mmn(R[z]). We simply denote Mp1(R[z])= {(a1(z), . . . , ap(z))� | ai(z) ∈ R[z], i = 1, . . . , p}
is simply denoted by Mp (see Jacobson, 1974, pp. 153–202; Roman, 1997, pp. 107–119).

Based on the Definition 2.1, for α(z)= (a1(z), . . . , ap(z))� and β(z)= (b1(z), . . . , bp(z))� ∈ Mp,
r(z) ∈ R[z], the addition and scalar multiplication in Mp are defined as

α(z)+ β(z)= (a1(z)+ b1(z), . . . , ap(z)+ bp(z))
�

and
r(z) · α(z)= (r(z) · a1(z), . . . , r(z) · ap(z))

�.

Then Mp is a R[z]-module (or a module over R[z]) under the above-mentioned addition and scalar mul-
tiplication.

The following Definition 2.2 to Theorem 2.1 presents the definitions and the necessary and sufficient
conditions for a matrix over R[z] to be invertible.

Definition 2.2 If A(z)= (aij(z))n×n is a square matrix over R[z] and there exists a square matrix B(z)=
(bij(z))n×n over R[z] such that A(z)B(z)= B(z)A(z)= In×n, then A(z) is called an invertible matrix over
R[z] and its inverse is denoted by A−1(z)= B(z). Likewise, B−1(z)= A(z). Moreover, if A(z) is invertible
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EXPLICIT CONSTRUCTION OF BIORTHOGONAL MULTIWAVELETS 507

over R[z], then its inverse matrix is unique. An invertible matrix over R[z] is also often referred to as a
unimodular square matrix over R[z] (see Waerden, 1978, p. 566).

Lemma 2.1 If σ is a commutative ring with identity, a matrix over σ is invertible, if and only if, its
determinant is invertible in σ .

The reader is referred to Jacobson (1974, Theorem 2, p. 94) to get more details about the proof of
this lemma. From Lemma 2.1 and Property (3) of R[z], we have the following necessary and sufficient
conditions for a square matrix A(z) over R[z] to be invertible.

Theorem 2.1 A matrix A(z)= (aij(z))n×n over R[z] is invertible, if and only if, det A(z)= czk , where
c ∈ R but c |= 0, k ∈ Z, z ∈ T .

It can be verified that the set composed of all unimodular square matrices of size n × n each, denoted
by GLn(R[z]), is a group, under the ordinary matrix multiplication operation.

In the lifting scheme, the polyphase matrix of any complementary finite impulse response matrix
filter pair (H , G) can always be factorized through elementary row and column transformations (see
Goh et al., 2000), which also play important roles in our matrix extension algorithm. But the elementary
row (column) transformations and the multiwavelet construction approach proposed in this paper are
different from the lifting scheme. Here, the definitions of elementary transformations and some related
conclusions are presented as follows.

Definition 2.3 ∀ A(z)= (aij(z))m×n ∈ Mmn(R[z]), the following three types of operations are called
elementary transformations of A(z):

Type I. Interchange the ith row (column) and the jth row (column) of A(z), i |= j.

Type II. Multiply a row (column) of A(z) by a unit of R[z].

Type III. ∀ b ∈ R[z], multiply the jth row (ith column) of A(z) by b and add it to the ith row (jth column),
i |= j.

Definition 2.4 A square matrix is called an elementary matrix over R[z] if it can be obtained from the
identity matrix In×n by performing a single elementary operation. The resultant three types of elementary
matrices corresponding to the elementary transformations are (see Jacobson, 1974, pp. 176–177) as
follows:

Type I′. Pij = In×n − eii − ejj + eij + eji, where eij is an n × n matrix whose (i, j)th element is 1, and all
other elements are 0.

Type II′. Let u be a unit of R[z], Di(u)= In×n + (u − 1)eii.

Type III′. ∀ b ∈ R[z] and i |= j, Tij(b)= In×n + beij.

From the above definitions, the following fundamental facts will be utilized for further development.

Proposition 2.1 Every n × n elementary matrix over R[z] is an element of group GLn(R[z]).
Elementary matrices Pij, Di(u) and Tij(b) are invertible with P−1

ij = Pij, D−1
i (u)= Di(u−1) and T−1

ij (b)=
Tij(−b), respectively.

Proposition 2.2 Suppose that A(z)= (aij(z))m×n ∈ Mmn(R[z]); then a row-elementary transforma-
tion of A(z) amounts to left multiplication of A(z) by an m × m elementary matrix; likewise, a
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508 Y.-G. CEN ET AL.

column-elementary transformation of A(z) amounts to right multiplication of A(z) by an n × n
elementary matrix.

Proposition 2.3 Suppose that A(z) is a matrix over R[z] and A1(z) is obtained from A(z) by an elemen-
tary transformation. Then,

(1) A1(z) remains as a matrix over R[z].

(2) A1(z) remains as a unimodular square matrix if A(z) is a unimodular square matrix.

(3) A1(z) remains as a non-unimodular and non-singular matrix if A(z) is a non-unimodular and
non-singular matrix.

Lemma 2.2 If A ∈ Mmn(D), where D is a Euclidean ring, then A can be transformed into a normal form
(diagonal form) by finite steps of elementary transformations:

diag(d1, . . . , dr, 0, . . . , 0)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

. . . O

dr

0

O
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where di |= 0 and di|dj (means that dj is divisible by di) if i � j.

We refer the reader to Jacobson (1974, Theorem 3.8, pp. 176–198) for the proof of this lemma. In
fact, when D is a Euclidean ring, only the elementary transformations of Type I and Type III are needed;
hence, matrix A can be converted into its normal form.

Lemma 2.3 Suppose that A(z)= (aij(z))n×n ∈ GLn(R[z]); then A(z) can be converted into a matrix
B(z)= (bij(z))n×n over a Euclidean subring P[z] of R[z] through finite steps of row-elementary transfor-
mations of Type II and B(z) ∈ GLn(R[z]).

The proof is provided in Appendix A.
From Lemma 2.3, a matrix A(z) over R[z] can be converted into a matrix B(z) over P[z]. Hence,

A(z) can be transformed into the diagonal form by Lemma 2.2. Furthermore, if A(z) is a unimodular
matrix, we have following theorem.

Theorem 2.2 Suppose that A(z)= (aij(z))n×n ∈ GLn(R[z]); then A(z) can be converted into the identity
matrix In×n by finite steps of row-elementary transformations.

The proof of this theorem is presented in Appendix B. Similarly, if A(z) ∈ GLn(R[z]), then A(z) can
be converted into In×n through finite steps of column-elementary transformations.

Definition 2.5 Suppose that A(z)= (aij(z))m×n ∈ Mmn(R[z]), B(z)= (bij(z))n×m ∈ Mnm(R[z]) satisfy-
ing A(z)B(z)= Im×m; then any pair of the following elementary transformations is called a row–column
(or column–row) product-preserving transformation of A(z) and B(z).

Type I′′. Interchange the ith row (column) and the jth row (column) of A(z). Simultaneously inter-
change the ith column (row) and the jth column (row) of B(z).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/79/3/502/819370 by guest on 23 April 2024



EXPLICIT CONSTRUCTION OF BIORTHOGONAL MULTIWAVELETS 509

Type II′′. Multiply the ith row (column) of A(z) by a unit czk of R[z] (where c ∈ R but c |= 0, and k ∈ Z).
Simultaneously multiply the ith column (row) of B(z) by 1/czk .

Type III′′. For any b(z) ∈ R[z], multiply the ith row (column) of A(z) by b(z) and add it to the jth row
(column) of A(z). Simultaneously, multiply the jth column (row) of B(z) by (−b(z)) and add it to
the ith column (row) of B(z).

Theorem 2.3 Suppose that A1(z) and B1(z) are the matrices obtained from A(z) and B(z) as defined in
Definition 2.5, respectively, by performing any type of product-preserving transformations. Then A1(z)
and B1(z) remain as two matrices over R[z] and A1(z)B1(z)= Im×m.

The proof of this theorem is given in Appendix C.
From Propositions 2.2, 2.3 and Theorems 2.2 and 2.3, the following useful corollary can be drawn,

which is a generalization of the above product-preserving transformations.

Corollary 2.1 Suppose that A(z)= (aij(z))m×n ∈ Mmn(R[z]), B(z)= (bij(z))n×m ∈ Mnm(R[z]) satisfy-
ing A(z) · B(z)= Im×m; then ∀ P(z) ∈ GLm(R[z]), (P(z)A(z)) · (B(z)P−1(z))= Im×m, which is equivalent
to the fact that A(z) and B(z) are performed by finite steps of row–column product-preserving transfor-
mations. Similarly, ∀ Q(z) ∈ GLn(R[z]), (A(z)Q(z)) · (Q−1(z)B(z))= Im×m, which is equivalent to the
fact that A(z) and B(z) are performed by finite steps of column–row product-preserving transformations.

This corollary will be used in Corollary 4.1 and Table 2 of Section 4.
As mentioned at the end of Section 1, in order to solve the polyphase matrices Ge(z), Go(z), G̃e(z)∗

and G̃o(z)∗ over R[z] based on the identity Q(z)Q̃(z)∗ = I2p×2p, we need to study whether there are invert-
ible matrices among He(z), Ho(z), H̃e(z)∗ and H̃o(z)∗. In fact, in the following section, we will prove
that at least one among these four matrices is invertible (the polyphase matrices H(z)= (He(z) Ho(z))
and H̃(z)= (H̃e(z) H̃o(z)) with at least one invertible submatrix in them are called canonical form) by
using the product-preserving transformations. This result ensures that the proposed matrix extension
approach (see Section 4) can be applied successfully.

3. Canonical form of the polyphase matrices of scaling vector functions

In this section, we will concentrate on two topics; first, for any polyphase matrices H(z) and H̃(z)∗,
rank H(z)= rank H̃(z)∗ = p; second, H(z) and H̃(z)∗ can always be transformed into a canonical form
by finite steps of column–row product-preserving transformations; i.e. He(z), Ho(z), H̃e(z)∗ and H̃o(z)∗
are all non-zero matrices and at least one of them is invertible.

Lemma 3.1 α1,α2, . . . ,αs ∈ Mp are R[z]-linearly independent, if and only if, their complex-conjugate
transpose α∗

1 ,α∗
2 , . . . ,α∗

s are R[z]-linearly independent.

Similarly, if α∗
1 ,α∗

2 , . . . ,α∗
s are R[z]-linearly independent, then α1,α2, . . . ,αs are also R[z]-linearly

independent.

Theorem 3.1 Suppose that

H(z)= (He(z) Ho(z))p×2p and H̃(z)= (H̃e(z) H̃o(z))p×2p

are the polyphase matrices of the scaling vector functions of certain compactly supported biorthogonal
multiwavelets. Then the p row-vectors of H(z) and H̃(z) are R[z]-linearly independent, respectively.
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510 Y.-G. CEN ET AL.

Proof. Suppose that the p column-vectors of H̃(z)∗ = (H̃e(z) H̃o(z))∗2p×p are α∗
1 , . . . ,α∗

p ∈ M2p and∑p
i=1 riα

∗
i = O2p×1 ∈ M2p, where ri ∈ R[z], i = 1, . . . , p. Thus, H(z) · (∑p

i=1 riα
∗
i )= H(z) · O2p×1 =

Op×1. Moreover, H(z) · H̃(z)∗ = Ip×p, i.e. H(z) · α∗
i = ei, where i = 1, . . . , p and ei is a p × 1 vector

whose ith element is 1, and all other elements are 0. Therefore,

H(z) ·
(

p∑
i=1

riα
∗
i

)
=

p∑
i=1

riH(z) · α∗
i =

p∑
i=1

riei = (r1, . . . , rp)
� = Op×1 ∈ Mp.

This leads to ri = 0 for i = 1, . . . , p, thus, α∗
1 , . . . ,α∗

p are R[z]-linearly independent. From Lemma 3.1,

α1, . . . ,αp are also R[z]-linearly independent, i.e. the p row-vectors of H̃(z) are R[z]-linearly
independent.

Similarly, from H̃(z)H(z)∗ = Ip×p, the p row-vectors of H(z) are also R[z]-linearly independent. �

From the above discussions, we arrive at the following two results.

(1) The ranks of H(z) and H̃(z)∗ are unchanged by elementary transformations.

(2) If H(z)H̃(z)∗ = Ip×p, then rank H(z)= rank H̃(z)∗ = p.

In order to continue the discussion of the properties of polyphase matrices, the definition of canoni-
cal form is given as follows.

Definition 3.1 Suppose that

A(z)= (A1(z) A2(z))p×2p and Ã(z)= (Ã1(z) Ã2(z))p×2p

are two matrices satisfying A(z)Ã(z)∗ = Ip×p over R[z]. The matrix pair A(z) and Ã(z)∗ are called canoni-
cal if A1(z), A2(z), Ã1(z) and Ã2(z) are all non-zero matrices and at least one among them is a unimodular
square matrix, where A1(z), A2(z), Ã1(z) and Ã2(z) are all p × p matrices over R[z].

Theorem 3.2 Suppose that H(z) and H̃(z) are the polyphase matrices of the scaling vector functions of
certain compactly supported biorthogonal multiwavelet; then H(z) and H̃(z)∗ can be transformed into
canonical forms by finite steps of column–row product-preserving transformations.

Proof. Since rank H(z)= rank H̃(z)∗ = p, from Lemma 2.2, there are elementary matrices P1, . . . , Pr

(with p × p each) and Q1, . . . , Qs (with 2p × 2p each) such that

Pr · · · P1H(z)Q1 · · · Qs =
⎛
⎜⎝

d1 0

. . . Op×p

0 dp

⎞
⎟⎠

p×2p

,

denoted as D(z)= (D1(z) Op×p)p×2p, where di ∈ R[z], di |= 0 and di|dj, if i< j.
Note that a pair of the elementary transformations corresponding to Pi and P−1

i (for i = 1, . . . , r)
constitutes a row–column product-preserving transformation of H(z) and H̃(z)∗. Similarly, a pair of the
elementary transformations corresponding to Qj and Q−1

j (for j = 1, . . . , s) constitutes a column–row
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EXPLICIT CONSTRUCTION OF BIORTHOGONAL MULTIWAVELETS 511

product-preserving transformation of H(z) and H̃(z)∗. Now, suppose that

Q−1
s · · · Q−1

1 H̃(z)∗P−1
1 · · · P−1

r = D̃(z)∗ =
(

D̃1(z)∗

D̃2(z)∗

)
2p×p

.

Thus,

D(z) · D̃(z)∗ = Ip×p ⇒ D1(z) · D̃1(z)
∗ = diag(d1, . . . , dp) · D̃1(z)

∗ = Ip×p.

From this identity, note that D1(z) and D̃1(z)∗ are two p × p matrices over R[z]; therefore, D1(z) and
D̃1(z)∗ are two mutually inverse unimodular square matrices over R[z]. Thus,

D̃1(z)
∗ = D1(z)

−1 = diag(d1, . . . , dp)
−1 = diag(1/d1, . . . , 1/dp).

Define d̃∗
i = 1/di for i = 1, . . . , p; then D̃1(z)∗ = diag(d̃∗

1 , . . . , d̃∗
p ), where d̃∗

i ∈ R[z] and did̃∗
i = 1. From

Proposition 2.3, D̃(z)∗ remains as a matrix over R[z], thus D̃2(z)∗ is also a matrix over R[z].
Define P = Pr · · · P1 and Q = Q1 · · · Qs; then H(z)Q = (P−1D1(z) O)p×2p and Q−1H̃(z)∗ =

(P∗D̃1(z) P∗D̃2(z))∗2p×p, where P−1D1(z) and P∗D̃1(z) are two p × p unimodular matrices over

R[z]. Thus, H(z) and H̃(z)∗ can be converted into (P−1D1(z) O)p×2p and (P∗D̃1(z) P∗D̃2(z))∗2p×p
by finite steps of column–row product-preserving transformations consisting of the matrix pairs
(Q1, Q−1

1 ), . . . , (Qs, Q−1
s ). But H(z)Q = (P−1D1(z) O)p×2p and Q−1H̃(z)∗ = (P∗D̃1(z) P∗D̃2(z))∗2p×p are

not canonical, since it is required by Definition 3.1 that all the four submatrices of H(z)Q and Q−1H̃(z)∗
should be non-zero. Thus, we need to perform product-preserving transformations further until the
definition of canonical form is satisfied. Two different cases are discussed as follows:

Case (1). If D̃2(z) |= Op×p, the matrix pair (P−1D1(z) O)p×2p and (P∗D̃1(z) P∗D̃2(z))∗2p×p can be
converted into canonical form through a series of column–row product-preserving transformations as
follows.

For any b(z) ∈ R[z] and b(z) |= 0, multiply the i0th (for 1 � i0 � p) column of (P−1D1(z) O)p×2p

by b(z) and add it to its j0th (for p + 1 � j0 � 2p) column and, simultaneously, multiply the
j0th row of (P∗D̃1(z) P∗D̃2(z))∗2p×p by (−b(z)) and add it to its i0th row. According to the

above manipulations, the matrix pair (P−1D1(z) O)p×2p and (P∗D̃1(z) P∗D̃2(z))∗2p×p are, in fact,

converted into (P−1D1(z) H ′
o(z))p×2p and (H̃ ′

e(z) P∗D̃2(z))∗2p×p, respectively, where H ′
o(z) |= O,

H̃ ′
e(z) |= O and P∗D̃2(z) |= O. P−1D1(z) is a unimodular square matrix and (P−1D1(z) H ′

o(z))p×2p ·
(H̃ ′

e(z) P∗D̃2(z))∗2p×p = Ip×p. Hence, (P−1D1(z) H ′
o(z))p×2p and (H̃ ′

e(z) P∗D̃2(z))∗2p×p are in canonical
form.

Case (2). If D̃2(z)= Op×p, then the following column–row product-preserving transformations
are performed on (P−1D1(z) O)p×2p and (P∗D̃1(z) P∗D̃2(z))∗2p×p = (P∗D̃1(z) O)∗2p×p: ∀ a(z) ∈ R[z]
and b(z) ∈ R[z], a(z) |= 0, b(z) |= 0, taking i0 |= i1: 1 � i0 � p, 1 � i1 � p and j0 |= j1: p + 1 � j0 � 2p,
p + 1 � j1 � 2p.

Step 1. Multiply the i0th column of (P−1D1(z) O)p×2p by a(z) and add it to the j0th column; simul-
taneously, multiply the j0th row of (P∗D̃1(z) O)∗2p×p by (−a(z)) and add it to the i0th row;

then (P−1D1(z) O)p×2p and (P∗D̃1(z) O)∗2p×p are converted into (P−1D1(z) H ′
o(z))p×2p and

(P∗D̃1(z) O)∗2p×p, respectively.
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512 Y.-G. CEN ET AL.

Step 2. Multiply the j1th column of (P−1D1(z) H ′
o(z))p×2p by b(z) and add it to the i1th column; simul-

taneously, multiply the i1th row of (P∗D̃1(z) O)∗2p×p by (−b(z)) and add it to the j1th row.

As a result, the matrix pair (P−1D1(z) H ′
o(z))p×2p and (P∗D̃1(z) O)∗2p×p are converted into

(P−1D1(z) H ′
o(z))p×2p and (P∗D̃1(z) H̃ ′

o(z))
∗
2p×p, respectively.

After the above manipulations, the resultant four submatrices P−1D1(z), H ′
o(z), (P

∗D̃1(z))∗ and
H̃ ′

o(z)
∗ are non-zero matrices and at least P−1D1(z) is unimodular. Thus, H(z) and H̃(z)∗ can be

transformed into canonical form (P−1D1(z) H ′
o(z))p×2p and (P∗D̃1(z) H̃ ′

o(z))
∗
2p×p by finite steps of

column–row product-preserving transformations. �

In the proof of Theorem 3.2, it is only ensured that the first submatrix He(z) in H(z) is converted
into a unimodular matrix P−1D1(z). Moreover, by using the following equivalent relations:

H(z)H̃(z)∗ = (He(z) Ho(z))p×2p · (H̃e(z) H̃o(z))
∗
2p×p = Ip×p,

⇔ (H̃e(z) H̃o(z))p×2p · (He(z) Ho(z))
∗
2p×p = Ip×p,

⇔ (Ho(z) He(z))p×2p · (H̃o(z) H̃e(z))
∗
2p×p = Ip×p,

⇔ (H̃o(z) H̃e(z))p×2p · (Ho(z) He(z))
∗
2p×p = Ip×p,

H(z) and H̃(z)∗ can be converted into any canonical form by finite steps of column–row product-
preserving transformations, so that any submatrix among He(z), Ho(z), H̃e(z)∗ and H̃o(z)∗ can be trans-
formed into a unimodular matrix over R[z].

In fact, in many cases, for any given H(z) and H̃(z)∗, there is at least one unimodular matrix among
the four submatrices He(z) Ho(z), H̃e(z)∗ and H̃o(z)∗. In the worst situation (i.e. no unimodular matrix
among these four submatrices), rank H(z)= rank H̃(z)∗ = p according to Theorem 3.1. Thus, H(z) and
H̃(z)∗ can always be transformed into canonical forms with at least one unimodular submatrix according
to Theorem 3.2. This property of polyphase matrices exactly ensures that the matrix extension problem
is always solvable for any compactly supported biorthogonal multiwavelets. For the sake of simplicity,
in the following discussion, we always assume that H(z) and H̃(z)∗ are canonical.

4. Solution of the matrix extension problem

In this section, a new approach for conducting matrix extension of compactly supported biorthogonal
multiwavelets is proposed. It provides explicit formulas in terms of the submatrices of H(z) and H̃(z)∗
as follows.

Theorem 4.1 Suppose that H(z)= (He(z) Ho(z))p×2p and H̃(z)∗ = (H̃e(z) H̃o(z))∗2p×p are the polyphase
matrices of a certain compactly supported biorthogonal scaling vector functions. They are in a canon-
ical form (here, H̃e(z)∗ is assumed as a unimodular matrix) satisfying H(z)H̃(z)∗ = He(z)H̃e(z)∗ +
Ho(z)H̃o(z)∗ = Ip×p. Then ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ge(z)= −H̃o(z)∗[H̃e(z)∗]−1,

Go(z)= Ip×p,

G̃e(z)∗ = −H̃e(z)∗Ho(z),

G̃o(z)∗ = Ip×p − H̃o(z)∗Ho(z)
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EXPLICIT CONSTRUCTION OF BIORTHOGONAL MULTIWAVELETS 513

Table 1 Solution sets obtained under different conditions (in which one unimodular matrix is imposed)

Conditions Ge(z) Go(z) G̃e(z)∗ G̃o(z)∗

H̃o(z)∗ is unimodular Ip×p −H̃e(z)∗[H̃o(z)∗]−1 I − H̃e(z)∗He(z) −H̃o(z)∗He(z)

H̃e(z)∗ is unimodular −H̃o(z)∗[H̃e(z)∗]−1 Ip×p −H̃e(z)∗Ho(z) I − H̃o(z)∗Ho(z)

Ho(z) is unimodular I − H̃e(z)∗He(z) −H̃e(z)∗Ho(z) Ip×p −[Ho(z)]−1He(z)

He(z) is unimodular −H̃o(z)∗He(z) I − H̃o(z)∗Ho(z) −[He(z)]−1Ho(z) Ip×p

satisfies the following matrix equation:

Q(z)Q̃(z)∗ =
(

He(z) Ho(z)

−H̃o(z)∗[H̃e(z)∗]−1 Ip×p

)
2p×2p

(
H̃e(z)∗ −H̃e(z)∗Ho(z)

H̃o(z)∗ Ip×p − H̃o(z)∗Ho(z)

)
2p×2p

= I2p×2p.

Proof. Because H̃e(z)∗ is a unimodular square matrix over R[z], [H̃e(z)∗]−1 remains as a unimodular
square matrix over R[z]. Thus, Ge(z), Go(z), G̃e(z)∗ and G̃o(z)∗ are matrices over R[z]. Hence, Q(z) and
Q̃(z)∗ are two 2p × 2p matrices over R[z]. Now, we need to verify that Q(z)Q̃(z)∗ = I2p×2p, by using the
following four equations.

(1) Based on the imposed condition H(z)H̃(z)∗ = Ip×p, i.e. He(z)H̃e(z)∗ + Ho(z)H̃o(z)∗ = Ip×p.

(2) −He(z)H̃e(z)∗Ho(z)+ Ho(z)[Ip×p − H̃o(z)∗Ho(z)]
= −[Ip×p − Ho(z)H̃o(z)∗]Ho(z)+ Ho(z)[Ip×p − H̃o(z)∗Ho(z)]
= −Ho(z)+ Ho(z)H̃o(z)∗Ho(z)+ Ho(z)− Ho(z)H̃o(z)∗Ho(z)
= Op×p.

(3) −H̃o(z)∗[H̃e(z)∗]−1H̃e(z)∗ + H̃o(z)∗ = Op×p.

(4) H̃o(z)∗[H̃e(z)∗]−1H̃e(z)∗Ho(z)+ [Ip×p − H̃o(z)∗Ho(z)] = Ip×p.

Therefore, Q(z)Q̃(z)∗ = I2p×2p.
Moreover, from Definition 2.2 in Section 2, Q̃(z)∗Q(z)= I2p×2p, since Q(z) and Q̃(z)∗ are two

mutually inverse square matrices. �

In Theorem 4.1, only H̃e(z)∗ is assumed to be a unimodular matrix. Furthermore, if He(z), Ho(z)
or H̃o(z)∗ is unimodular, which corresponds to other three canonical form types. Explicit formulas for
the matrix extension problem can be obtained similar to that in Theorem 4.1, and they are listed in the
Table 1.

In general, given H(z)= (He(z) Ho(z))p×2p and H̃(z)∗ = (H̃e(z) H̃o(z))∗2p×p, the solution set of

Q(z)Q̃(z)∗ =
(

He(z) Ho(z)

Ge(z) Go(z)

)
2p×2p

(
H̃e(z)∗ G̃e(z)∗

H̃o(z)∗ G̃o(z)∗

)
2p×2p

= I2p×2p

is not unique. The following theorem presents the relationship between any two different extensions.
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Theorem 4.2 Suppose that {Ge(z), Go(z), G̃e(z)∗, G̃o(z)∗} and {G′
e(z), G′

o(z), G̃′
e(z)

∗, G̃′
o(z)

∗} are two
sets of matrices over R[z] satisfying the matrix equations Q(z)Q̃(z)∗ = I2p×2p and Q′(z)Q̃′(z)∗ = I2p×2p,
respectively; then

Q′(z)=
(

He(z) Ho(z)

G′
e(z) G′

o(z)

)
2p×2p

and Q̃′(z)∗ =
(

H̃e(z)∗ G̃′
e(z)

∗

H̃o(z)∗ G̃′
o(z)

∗

)
2p×2p

can be obtained from

Q(z)=
(

He(z) Ho(z)

Ge(z) Go(z)

)
2p×2p

and Q̃(z)∗ =
(

H̃e(z)∗ G̃e(z)∗

H̃o(z)∗ G̃o(z)∗

)
2p×2p

,

respectively, by finite steps of row–column product-preserving transformations of Q(z) and Q̃(z)∗.

Proof. Since Q(z) and Q′(z) (similarly, Q̃(z)∗and Q̃′(z)∗) are 2p × 2p unimodular square matrices, by
Theorem 2.2 there are elementary matrices q1, . . . , qr and q′

1, . . . , q′
r each, with the size of 2p × 2p, such

that
q1 · · · qrQ(z)= I2p×2p and q′

1 · · · q′
sQ

′(z)= I2p×2p.

Hence,
Q′(z)= (q′

s)
−1 · · · (q′

1)
−1I2p×2p = (q′

s)
−1 · · · (q′

1)
−1q1 · · · qrQ(z).

Rewrite (q′
s)

−1, . . . , (q′
1)

−1, q1, . . . , qr as P1, . . . , Pk (where k = r + s); then Q′(z)= P1 · · · PkQ(z).
Consider the following transformation matrix pairs (P1, P−1

1 ), (P2, P−1
2 ), . . . , (Pk , P−1

k ); then

Q(z)Q̃(z)∗ = I2p×2p ⇒ P1 · · · PkQ(z)Q̃(z)
∗P−1

k · · · P−1
1 = I2p×2p.

Since P1 · · · PkQ(z)= Q′(z), according to the uniqueness of the inverse matrix of a unimodular square
matrix and the condition Q′(z)Q̃′(z)∗ = I2p×2p, we should have Q̃′(z)∗ = Q̃(z)∗P−1

k · · · P−1
1 . Thus,

P1 · · · PkQ(z)Q̃(z)
∗P−1

k · · · P−1
1 = Q′(z)Q̃′(z)∗ = I2p×2p,

i.e. for any two different matrix extension forms {Q(z), Q̃(z)∗} and {Q′(z), Q̃′(z)∗} of (He(z) Ho(z))p×2p

and (H̃e(z) H̃o(z))∗2p×p, respectively, they can be converted reciprocally by finite steps of row–column
product-preserving transformations, and each of these product-preserving transformations only acts
on a row of (Ge(z) Go(z))p×2p and the corresponding column of (G̃e(z) G̃o(z))∗2p×p without changing

(He(z) Ho(z))p×2p and (H̃e(z) H̃o(z))∗2p×p. �

Corollary 4.1 Suppose that H(z)= (He(z) Ho(z))p×2p and H̃(z)∗ = (H̃e(z) H̃o(z))∗2p×p are the
polyphase matrices of the scaling vector functions of certain compactly supported biorthogonal mul-
tiwavelets and H̃e(z)∗ and H̃o(z)∗ are unimodular square matrices; then⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ge(z)= −[H̃e(z)∗]−1,

Go(z)= [H̃o(z)∗]−1,

G̃e(z)∗ = −H̃e(z)∗Ho(z)H̃o(z)∗,

G̃o(z)∗ = (Ip×p − H̃o(z)∗Ho(z))H̃o(z)∗ = H̃o(z)∗He(z)H̃e(z)∗
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satisfies the matrix equation(
He(z) Ho(z)

Ge(z) Go(z)

)
2p×2p

(
H̃e(z)∗ G̃e(z)∗

H̃o(z)∗ G̃o(z)∗

)
2p×2p

= I2p×2p.

This corollary can be directly deduced from Corollary 2.1 and Theorems 4.1 and 4.2.
According to Corollary 4.1, the formulas in Table 1 lead to other forms under different conditions,

which are listed in Table 2.
Tables 1 and 2 present two explicit formula sets of the solutions for the matrix extension problem,

which give us more freedom to obtain different extension forms. When a pair of polyphase matrices
H(z)= (He(z) Ho(z)) and H̃(z)∗ = (H̃e(z) H̃o(z))∗ is given, we need to verify which one among He(z),
Ho(z), H̃e(z)∗ and H̃o(z)∗ is unimodular (or can be converted into a unimodular matrix by the column–
row product-preserving transformations). Then the computational formulas can be chosen from Table 1
or 2. If there are several (up to four) unimodular matrices among these four matrices, different sets of
explicit formulas can be chosen from Tables 1 and 2. Thus, we can select one of them to obtain an
extension result that is more closer to the desired extension form.

From Theorems 4.1, 4.2 and Tables 1 and 2, under the condition that H(z) and H̃(z)∗ are of canonical
form, the following algorithm is obtained for the matrix extension problem of compactly supported
biorthogonal multiwavelets:

Step 1. Determine which submatrices in H(z) and H̃(z)∗ are unimodular matrices; then the correspond-
ing formulas can be selected from Table 1 or 2 to compute Ge(z), Go(z), G̃e(z)∗ and G̃o(z)∗.

Step 2. In order to obtain the desired extension forms, appropriate row–column product-preserving
transformations for G(z)= (Ge(z) Go(z))p×2p and G̃(z)∗ = (G̃e(z) G̃o(z))∗2p×p are performed such
that they can be converted into desired forms, respectively.

If the polyphase matrices are not in canonical form, i.e. no unimodular submatrices in H(z) and
H̃(z)∗, then they need to be converted into a canonical form. According to Theorem 3.2, we have the
following algorithm:

Step 1. Transform H(z) and H̃(z)∗ into a certain canonical form H ′(z)= (H ′
e(z) H ′

o(z))p×2p and
H̃ ′(z)∗ = (H̃ ′

e(z) H̃ ′
o(z))

∗
2p×p by finite steps of column–row product-preserving transformations

(denoted as σ1, σ2, . . . , σs).

Step 2. For the canonical form of H ′(z) and H̃ ′(z)∗ obtained in Step 1, the corresponding formulas can
be selected from Table 1 or 2 to compute G′

e(z) , G′
o(z), G̃′

e(z)
∗ and G̃′

o(z)
∗; then we have

Q′(z)Q̃′(z)∗ =
(

H ′
e(z) H ′

o(z)

G′
e(z) G′

o(z)

)
2p×2p

·
(

H̃ ′
e(z)

∗ G̃′
e(z)

∗

H̃ ′
o(z)

∗ G̃′
o(z)

∗

)
2p×2p

= I2p×2p.

Step 3. Perform the column–row product-preserving transformations: σ−1
s , σ−1

s−1, . . . , σ−1
1 on the matrix

pair Q′(z) and Q̃′(z)∗; then the extension matrices Q(z) and Q̃(z)∗ of H(z) and H̃(z)∗ can be
obtained, respectively, i.e.

Q(z)Q̃(z)∗ =
(

He(z) Ho(z)

Ge(z) Go(z)

)
2p×2p

·
(

H̃e(z)∗ G̃e(z)∗

H̃o(z)∗ G̃o(z)∗

)
2p×2p

= I2p×2p.
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Table 2 Solution sets obtained under different conditions (in which two unimodular matrices are imposed)

Conditions Ge(z) Go(z) G̃e(z)∗ G̃o(z)∗

H̃o(z)∗ and H̃e(z)∗ are
unimodular

−[H̃e(z)∗]−1 [H̃o(z)∗]−1 −H̃e(z)∗Ho(z)H̃o(z)∗ H̃o(z)∗He(z)H̃e(z)∗

H̃o(z)∗ and He(z) are
unimodular

He(z) −He(z)H̃e(z)∗[H̃o(z)∗]−1 He(z)−1 − H̃e(z)∗ −H̃o(z)∗

H̃e(z)∗ and Ho(z) are
unimodular

−[Ho(z)]−1H̃o(z)∗[H̃e(z)∗]−1 [Ho(z)]−1 −H̃e(z)∗ [Ho(z)]−1 − H̃o(z)∗

Ho(z) and He(z) are uni-
modular

Ho(z)H̃o(z)∗He(z) −He(z)H̃e(z)∗Ho(z) [He(z)]−1 −[Ho(z)]−1

Ho(z) and H̃e(z)∗ are
unimodular

[H̃e(z)∗]−1 − He(z) −Ho(z) H̃e(z)∗ −[Ho(z)]−1He(z)H̃e(z)∗

He(z) and H̃o(z)∗ are
unimodular

−He(z) [H̃o(z)∗]−1 − Ho(z) −[Ho(z)]−1Ho(z)H̃o(z)∗ H̃o(z)∗
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Step 4. In order to obtain the desired extension forms, appropriate row–column product-preserving
transformations are performed for G(z)= (Ge(z) Go(z))p×2p and G̃(z)∗ = (G̃e(z) G̃o(z))∗2p×p such
that they can be converted into the desired forms, respectively.

5. Examples

Usually, for any given polyphase matrices H(z) and H̃(z)∗ with canonical form, if the number of uni-
modular square matrices among the submatrices He(z), Ho(z), H̃e(z)∗ and H̃o(z)∗ is greater than or
equal to 2, different formulas can be found in Tables 1 and 2 to compute Ge(z), Go(z), G̃e(z)∗ and
G̃o(z)∗. However, computational examples show that appropriate selection of formulas from these two
tables can have explicit advantages. In Example 2, a comparison is given by using two sets of formulas
selected from Tables 1 and 2, respectively, for the same extension problem, which demonstrates that
appropriately selecting formulas can further decrease the computational cost.

Example 1 Here, the biorthogonal multiwavelet Bighm is reconstructed from its corresponding scal-
ing vector functions, which are constructed in Strela & Walden (1998) by using a two-scale similarity
transform. The scaling functions φ1(x) and φ2(x) have approximation order 1, and the dual ones φ̃1(x),
φ̃2(x) have approximation order 3. The scaling matrix coefficients are given as follows:

H0 =
(− 1

20
1

20

− 1
20

1
20

)
, H1 =

(
1
2 −1
1
2 −1

)
, H2 =

(
11
10 0

0 11
10

)
, H3 =

(
1
2 1

− 1
2 −1

)
,

H4 =
(− 1

20 − 1
20

1
20

1
20

)
, H̃0 = 1

20

(
0 0
0 0

)
, H̃1 = 1

20

(
10 −4

15 −7

)
,

H̃2 = 1

20

(
20 0

0 10

)
, H̃3 = 1

20

(
10 4

−15 −7

)
.

Solution. From the definition of polyphase matrix described in Section 1, we have

He(z)= 1√
2

(− 1
20 + 11

10 z − 1
20 z2 1

20 − 1
20 z2

− 1
20 + 1

20 z2 1
20 + 11

10 z + 1
20 z2

)
, Ho(z)= 1√

2

(
1
2 + 1

2 z −1 + z
1
2 − 1

2 z −1 − z

)
,

H̃e(z)
∗ = 1

20
√

2

(
20z−1 0

0 10z−1

)
, H̃o(z)

∗ = 1

20
√

2

(
10(1 + z−1) 15(1 − z−1)

4(z−1 − 1) −7(1 + z−1)

)
.

Step 1. Since det H̃e(z)∗ = 1
4 z−2, H̃e(z)∗ is a unimodular square matrix over R[z] according to the

Theorem 2.1, so Ge(z), G̃e(z)∗ and G̃o(z)∗ can be calculated by using the formulas in the sec-
ond row of Table 1 directly.
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Step 2 Compute Ge(z), G̃e(z)∗ and G̃o(z)∗ as follows:

Ge(z)= −H̃o(z)
∗[H̃e(z)

∗]−1 = − 1

20
√

2

(
10(1 + z−1) 15(1 − z−1)

4(z−1 − 1) −7(1 + z−1)

)
· 1√

2

(
2z 0
0 4z

)

= − 1

10

(
5(z + 1) 15(z − 1)

2(1 − z) −7(z + 1)

)
,

G̃e(z)
∗ = −H̃e(z)

∗Ho(z)= − 1

20
√

2

(
20z−1 0

0 10z−1

)
· 1√

2

(
1
2 (1 + z) z − 1
1
2 (1 − z) −1 − z

)

= −1

4

(
1 + z−1 2(1 − z−1)

1
2 (z

−1 − 1) −1 − z−1

)
,

G̃o(z)
∗ = I2×2 − H̃o(z)

∗Ho(z)= I2×2 − 1

20
√

2

(
10(1 + z−1) 15(1 − z−1)

4(z−1 − 1) −7(1 + z−1)

)

· 1√
2

(
1
2 (1 + z) z − 1
1
2 (1 − z) −1 − z

)

= 1

80

(
30 + 5z + 5z−1 10(z − z−1)

3(z−1 − z) 36 − 6z − 6z−1

)
.

Step 3. Perform row–column product-preserving transformations for (Ge(z) I2×2)2×4 and (G̃e(z)
G̃o(z))∗4×2 in order to obtain the same multiwavelet matrix coefficients as that in Strela & Walden
(1998).

In order to describe the exact row–column product-preserving transformations involved, the follow-
ing short-hand notation is used: the ith row (column) of a matrix is denoted by ri (ci), i = 1, 2, while (I)
and (II) denote the first and second matrices, respectively.

(Ge(z) I2×2)2×4

(
G̃e(z)∗

G̃o(z)∗

)
4×2

=
⎛
⎜⎝

−(z + 1)

2

3(1 − z)

2
1 0

(z − 1)

5

7(z + 1)

10
0 1

⎞
⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(1 + z−1)

4

(z−1 − 1)

2
(1 − z−1)

8

(1 + z−1)

4
(30 + 5z + 5z−1)

80

(z − z−1)

8
3(z−1 − z)

80

(36 − 6z − 6z−1)

80

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(I):r1×
√

2z,r2×
√

2z−−−−−−−−−−−−−→
(II):c1× 1√

2
z−1,c2× 1√

2
z−1

⎛
⎜⎜⎝

−√
2(z2 + z)

2

3
√

2(z − z2)

2

√
2z 0

√
2(z2 − z)

5

7
√

2(z + z2)

10
0

√
2z

⎞
⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(z−1 + z−2)

4
√

2

(z−2 − z−1)

2
√

2

(z−1 − z−2)

8
√

2

(z−1 + z−2)

4
√

2

(30z−1 + 5 + 5z−2)

80
√

2

(1 − z−2)

8
√

2

3(z−2 − 1)

80
√

2

(36z−1 − 6 − 6z−2)

80
√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (G′
e(z) G′

o(z))2×4

(
G̃′

e(z)
∗

G̃′
o(z)

∗

)
4×2

.

Thus, from the definition of polyphase matrix, matrix coefficients of the corresponding multi-
wavelets can be obtained from the above (G′

e(z) G′
o(z)) and (G̃′

e(z) G̃′
o(z))

∗, as follows:

G0 =
(

0 0
0 0

)
, G1 =

(
0 0
0 0

)
, G2 =

(−1 3

− 2
5

7
5

)
, G3 =

(
2 0
0 2

)
, G4 =

(−1 −3
2
5

7
5

)
,

G̃0 =
(

0 0
0 0

)
, G̃1 =

(
1

16 − 3
80

1
8 − 3

40

)
, G̃2 =

(− 1
4

1
8

− 1
2

1
4

)
, G̃3 =

(
3
8 0

0 9
20

)
,

G̃4 =
(− 1

4 − 1
8

1
2

1
4

)
, G̃5 =

(
1

16
3
80

− 1
8 − 3

40

)
.

The above matrix coefficients is consistent with the results as documented in Strela & Walden
(1998). The graphs of φ1(x), ψ1(x), φ2(x), ψ2(x), φ̃1(x), ψ̃1(x), φ̃2(x) and ψ̃2(x) are shown in Figs 1
and 2, respectively.

Example 2 Consider the biorthogonal sets of scaling vector functions (φ1(x),φ2(x)) and (φ̃1(x), φ̃2(x))
and their corresponding multiwavelets (ψ1(x),ψ2(x)) and (ψ̃1(x), ψ̃2(x)) presented in Goh & Yap (1998,
pp. 153–156), where φ1(x), φ̃1(x), ψ2(x) and ψ̃2(x) are symmetric, while φ2(x), φ̃2(x), ψ1(x) and ψ̃1(x)
are antisymmetric. All the scaling and multiwavelet functions have a support in [−1, 1]. The scaling
coefficients are given in Goh & Yap (1998) as follows:

H(−1)=
(

1
2

1
5

−1 − 2
5

)
, H(0)=

(
1 0

0 1
2

)
, H(1)=

(
1
2 − 1

5

1 − 2
5

)
,

H̃(−1)=
(

1
2

5
4

− 7
16 − 35

32

)
, H̃(0)=

(
1 0

0 1
2

)
, H̃(1)=

(
1
2 − 5

4
7

16 − 35
32

)
.
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Fig. 1. Graphs of scaling functions and their corresponding multiwavelet functions of Example 1.

Solution. From the definition of the polyphase matrix described in Section 1, we have

He(z)=

⎛
⎜⎜⎝

√
2

2
0

0

√
2

4

⎞
⎟⎟⎠ , Ho(z)=

⎛
⎜⎜⎝

√
2(z−1 + 1)

4

√
2(z−1 − 1)

10√
2(1 − z−1)

2

−√
2(z−1 + 1)

5

⎞
⎟⎟⎠ ,

H̃e(z)
∗ =

⎛
⎜⎜⎝

√
2

2
0

0

√
2

4

⎞
⎟⎟⎠ , H̃o(z)

∗ =

⎛
⎜⎜⎝

√
2(z + 1)

4

7
√

2(1 − z)

32

5
√

2(z − 1)

8

−35
√

2(z + 1)

64

⎞
⎟⎟⎠ .

Step 1. Obviously, from Theorem 2.1, H̃e(z)∗ is a unimodular square matrix since det H̃e(z)∗ = 1
4 .

Step 2. Compute Ge(z), G̃e(z)∗ and G̃o(z)∗ by using the formulas in the second row of Table 1, as
follows:

Ge(z)= −H̃o(z)
∗[H̃e(z)

∗]−1 = −4

⎛
⎜⎜⎝

√
2(z + 1)

4

7
√

2(1 − z)

32

5
√

2(z − 1)

8

−35
√

2(z + 1)

64

⎞
⎟⎟⎠
⎛
⎜⎜⎝

√
2

4
0

0

√
2

2

⎞
⎟⎟⎠
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Fig. 2. Graphs of the dual scaling functions and their corresponding dual multiwavelet functions of Example 1.

=

⎛
⎜⎜⎝

−(z + 1)

2

7(z − 1)

8
5(1 − z)

4

35(z + 1)

16

⎞
⎟⎟⎠ ,

G̃e(z)
∗ = −H̃e(z)

∗Ho(z)= −

⎛
⎜⎜⎝

√
2

2
0

0

√
2

4

⎞
⎟⎟⎠
⎛
⎜⎜⎝

√
2(z−1 + 1)

4

√
2(z−1 − 1)

10√
2(1 − z−1)

2
−

√
2(z−1 + 1)

5

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

− (z
−1 + 1)

4

(1 − z−1)

10
(z−1 − 1)

4

(z−1 + 1)

10

⎞
⎟⎟⎠ ,

G̃o(z)
∗ = I2×2 − H̃o(z)

∗Ho(z)= I2×2 −

⎛
⎜⎜⎝

√
2(z + 1)

4
−7

√
2(z − 1)

32

5
√

2(z − 1)

8
−35

√
2(z + 1)

64

⎞
⎟⎟⎠
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·

⎛
⎜⎜⎝

√
2(z−1 + 1)

4

√
2(z−1 − 1)

10

−
√

2(z−1 − 1)

2
−

√
2(z−1 + 1)

5

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1

32
(10 + 3z−1 + 3z) − 3

80
(z − z−1)

−15

64
(z−1 − z)

1

32
(10 − 3z−1 − 3z)

⎞
⎟⎟⎠ .

It can be verified that

Q(z)Q̃(z)∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2

2
0

√
2(z−1 + 1)

4

√
2(z−1 − 1)

10

0

√
2

4

√
2(1 − z−1)

2

−√
2(z−1 + 1)

5
(z + 1)

−2

7(z − 1)

8
1 0

5(1 − z)

4

35(z + 1)

16
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2

2
0

(z−1 + 1)

−4

(1 − z−1)

10

0

√
2

4

(z−1 − 1)

4

(z−1 + 1)

10√
2(z + 1)

4

7
√

2(1 − z)

32

(10 + 3z−1 + 3z)

32

3(z−1 − z)

80

5
√

2(z − 1)

8

35
√

2(z + 1)

−64

15(z − z−1)

64

(10 − 3z−1 − 3z)

32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I4×4.

Step 3. Perform row–column product-preserving transformations for (Ge(z) I2×2)2×4 and
(G̃e(z) G̃o(z))∗4×2 in order to obtain the same extension forms as reported in Goh & Yap
(1998). Here, we only simply present the product-preserving transformation steps:

σ1: (I) : r1 × (− 5
2 )+ r2; (II) : c2 × 5

2 + c1;

σ2: (I) : r2 × 1
5 (1 + z)+ r1; (II) : c1 × (−1

5 )(1 + z)+ c2;

σ3: (I) : r1 × z−1; (II) : c1 × z;

σ4: (I) : r1 × (−5
2 )+ r2; (II) : c2 × 5

2 + c1;

σ5: (I) : r1 × 2
√

2
7 , r2 × (−√

2); (II) : c1 × 7
2
√

2
, c2 × (−1√

2
).
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After the above steps of product-preserving transformations, the resultant matrices (Ge(z) Go(z))2×4

and (G̃e(z) G̃o(z))∗4×2 are

(G′
e(z) G′

o(z))2×4

(
G̃′

e(z)
∗

G̃′
o(z)

∗

)
4×2

=

⎛
⎜⎜⎜⎝

0

√
2

2

−√
2(1 − z−1)

7

2
√

2(1 + z−1)

35

−5√
2

0
5
√

2(1 + z−1)

4

(z−1 − 1)√
2

⎞
⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
√

2

10

7
√

2

8
0

7
√

2(z − 1)

64

√
2(1 + z)

20

35
√

2(1 + z)

128

√
2(z − 1)

8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above two matrices align with (Ge(z) Go(z))2×4 and (G̃e(z) G̃o(z))∗4×2 as addressed in Goh &
Yap (1998). The graphs of φ1(x), ψ1(x), φ2(x), ψ2(x), φ̃1(x), ψ̃1(x), φ̃2(x) and ψ̃2(x) are shown in Figs 3
and 4, respectively.

Now, another set of formulas (the first row in Table 2) is employed to compute this example for
the purpose of comparing the computational cost. It shows that appropriately selecting formulas from
Tables 1 and 2 can save computational cost greatly. Here, we can note that after Ge(z), Go(z), G̃e(z)∗
and G̃o(z)∗ are obtained by using the first row formulas in Table 2, only two steps of product-preserving
transformations are needed to obtain the desired forms.

Step 1. Obviously, we can verify that H̃e(z)∗ and H̃o(z)∗ are unimodular square matrices since
det H̃e(z)∗ = 1

4 and det H̃o(z)∗ = − 35
32 z.

Step 2. Compute Ge(z), Go(z), G̃e(z)∗ and G̃o(z)∗ by using the formulas in the first row of Table 2, as
follows:

Ge(z)= −[H̃e(z)
∗]−1 =

(−√
2 0

0 −2
√

2

)
,

Go(z)= [H̃o(z)
∗]−1 =

⎛
⎜⎜⎝

√
2(1 + z−1)

2

√
2(z−1 − 1)

5

4
√

2(1 − z−1)

7

−8
√

2(1 + z−1)

35

⎞
⎟⎟⎠ ,

G̃e(z)
∗ = −H̃e(z)

∗Ho(z)H̃o(z)
∗ =

⎛
⎜⎜⎝

−√
2

4
0

0
−7

√
2

32

⎞
⎟⎟⎠ ,
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Fig. 3. Graphs of scaling functions and their corresponding multiwavelet functions of Example 2.

G̃o(z)
∗ = H̃o(z)

∗He(z)H̃e(z)
∗ =

⎛
⎜⎜⎜⎝

√
2(1 + z)

8

7
√

2(1 − z)

256

5
√

2(z − 1)

16

−35
√

2(1 + z)

512

⎞
⎟⎟⎟⎠ .

Step 3. In order to obtain the same extension result as that in Goh & Yap (1998), we only need to per-
form the following simple row–column product-preserving transformations for (Ge(z) Go(z))2×4

and (G̃e(z) G̃o(z))∗4×2:

σ1: (I) : r1 ↔ r2; (II) : c1 ↔ c2;

σ2: (I) : r1 × (− 1
4 ), r2 × 5

2 ; (II) : c1 × (−4), c2 × 2
5 .
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Fig. 4. Graphs of the dual scaling functions and their corresponding dual multiwavelet functions of Example 2.

Example 3 The biorthogonal multiwavelet in this example is constructed in Hardin & Marasovich
(1999, pp. 48–51) by using fractal interpolation functions. The supports of the scaling functions
and multiwavelet functions are in [−1, 1]. The scaling functions are symmetric, and the associated
multiwavelet functions are symmetric/antisymmetric. The scaling coefficients are given in Hardin &
Marasovich (1999) as follows:

H−2 =
(

0 − 1
6
√

3

0 0

)
, H−1 =

(− 1
6

5
6
√

3
0 0

)
, H0 =

(
1 5

6
√

3

0 2
3

)
, H1 =

(− 1
6 − 1

6
√

3
2√
3

2
3

)
,

H̃−2 =
(

0 0
0 0

)
, H̃−1 =

(− 1
2

√
3

2
0 0

)
, H̃0 =

(
1

√
3

2

0 1
2

)
, H̃1 =

(− 1
2 0

2√
3

1
2

)
.
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Solution. From the definition of the polyphase matrix described in Section 1, we have

He(z)=

⎛
⎜⎜⎜⎝

1√
2

(5 − z−1)

6
√

6

0

√
2

3

⎞
⎟⎟⎟⎠ , Ho(z)=

⎛
⎜⎜⎜⎝

− (z
−1 + 1)

6
√

2

(5z−1 − 1)

6
√

6√
6

3

√
2

3

⎞
⎟⎟⎟⎠ ,

H̃e(z)
∗ =

⎛
⎜⎜⎜⎝

1√
2

0

√
3

2
√

2

1

2
√

2

⎞
⎟⎟⎟⎠ , H̃o(z)

∗ =

⎛
⎜⎜⎜⎝

− 1

2
√

2
(1 + z)

2√
6√

3

2
√

2
z

1

2
√

2

⎞
⎟⎟⎟⎠ .

Step 1. Since det Ho(z)= − 1
3 z−1, det H̃e(z)∗ = 1

4 , Ho(z) and H̃e(z)∗ are unimodular square matrices

over R[z], it follows that Ge(z), Go(z), G̃e(z)∗ and G̃o(z)∗ can be calculated directly.

Step 2. Compute Ge(z), Go(z), G̃e(z)∗ and G̃o(z)∗ by using the formulas listed in the fifth row of Table 2,
as follows:

Ge(z)= [H̃e(z)
∗]−1 − He(z)=

⎛
⎜⎜⎜⎝

1√
2

(z−1 − 5)

6
√

6

−√
6

5
√

2

3

⎞
⎟⎟⎟⎠ ,

Go(z)= −Ho(z)=

⎛
⎜⎜⎜⎝
(z−1 + 1)

6
√

2

(1 − 5z−1)

6
√

6

−√
6

3

−√
2

3

⎞
⎟⎟⎟⎠ ,

G̃e(z)
∗ = H̃e(z)

∗ =

⎛
⎜⎜⎜⎝

1√
2

0

√
3

2
√

2

1

2
√

2

⎞
⎟⎟⎟⎠ ,

G̃o(z)
∗ = −[Ho(z)]

−1He(z)H̃e(z)
∗ =

⎛
⎜⎜⎜⎝
(3z − 1)

2
√

2

(z − 1)

2
√

6

−3
√

3

2
√

2
z − 1

2
√

2
z

⎞
⎟⎟⎟⎠ .

Step 3. Perform row–column product-preserving transformations for (Ge(z) Go(z))2×4 and
(G̃e(z) G̃o(z))∗4×2 to obtain the same multiwavelet matrix coefficients as that in Hardin &
Marasovich (1999).

σ1: (I): r1 × √
12 + r2; (II): c2 × (−√

12)+ c1;

σ2: (I): r1 × −1, r2 × (− 1√
6
); (II): c1 × (−1), c2 × (−√

6).
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After the above two simple steps of product-preserving transformations, the resultant matrices
(Ge(z) Go(z))2×4 and (G̃e(z) G̃o(z))∗4×2 are

(Ge(z) Go(z))2×4 ·
(

G̃e(z)∗

G̃o(z)∗

)
4×2

=

⎛
⎜⎜⎜⎝

−1√
2

(5 − z−1)

6
√

6

−(1 + z−1)

6
√

2

(5z−1 − 1)

6
√

6

0
−(5 + z−1)

6
√

3

(1 − z−1)

6

(1 + 5z−1)

6
√

3

⎞
⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1√
2

0

√
3

2
√

2

−√
3

2

−(z + 1)

2
√

2

(1 − z)

2√
3

2
√

2
z

√
3

2
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is consistent with the results as documented in Hardin & Marasovich (1999). The graphs of φ1(x),
ψ1(x), φ2(x), ψ2(x), φ̃1(x), ψ̃1(x), φ̃2(x) and ψ̃2(x) are shown in Figs 5 and 6, respectively.

Example 4 Here, the biorthogonal multiwavelet (2/4 SABMF) is reconstructed as presented in Tan
et al. (1999). Both the scaling and wavelet functions are symmetric/antisymmetric about 1

2 . The scaling
coefficients were given in Tan et al. (1999) as follows:

H0 =
(

1 0
−1 0

)
, H1 =

(
1 0
1 0

)
, H̃−1 =

(
0 1

8

0 − 1
8

)
,

H̃0 =
(

1 1
8

−1 1
8

)
, H̃1 =

(
1 − 1

8

1 1
8

)
, H̃2 =

(
0 − 1

8

0 − 1
8

)
.

Solution. Step 1. The polyphase matrices of the scaling coefficients are

He(z)=

⎛
⎜⎜⎝

1√
2

0

−1√
2

0

⎞
⎟⎟⎠ , Ho(z)=

⎛
⎜⎜⎝
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2

0
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2
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⎞
⎟⎟⎠ ,
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⎜⎜⎝
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√
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√
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8
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Fig. 5. Graphs of scaling functions and their corresponding multiwavelet functions of Example 3.

There is no unimodular matrix among these four matrices. Thus, column–row product-preserving
transformations need to be performed on H(z) and H̃(z)∗. Here, only one step of column–row product-
preserving transformation needs to be performed:

σ : (I) : c2 ↔ c3; (II) : r2 ↔ r3,

i.e.

H(z)H̃(z)∗ = (He(z) Ho(z))

(
H̃e(z)∗

H̃o(z)∗

)
=

⎛
⎜⎜⎝

1√
2

0
1√
2

0

− 1√
2

0
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2
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⎞
⎟⎟⎠
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2
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√
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2
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2
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8
√

2

1 − z

8
√

2
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,
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Fig. 6. Graphs of the dual scaling functions and their corresponding dual multiwavelet functions of Example 3.

(I):c2↔c3−−−−−→
(II):r2↔r3
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⎟⎠
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2
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2
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8
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= (H ′
e(z) H ′

o(z))

(
H̃ ′

e(z)
∗

H̃ ′
o(z)

∗

)
.

We see that H ′
e(z) and H̃ ′

e(z)
∗ are unimodular matrices since det H ′

e(z)= det H̃ ′
e(z)

∗ = 1.
Step 2. Compute G′

e(z), G′
o(z), G̃′

e(z)
∗ and G̃′

o(z)
∗ by using the formulas in the second row of Table 1

as follows:

G′
e(z)= −H̃ ′

o(z)
∗[H̃ ′

e(z)
∗]−1 =

⎛
⎜⎝ 0

(z−1 − 1)

8
(1 − z)

8
0

⎞
⎟⎠ , G′

o(z)= I2,
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G̃′
e(z)

∗ = −H̃ ′
e(z)

∗H ′
o(z)=

(
0 0
0 0

)
, G̃′

o(z)
∗ = I2 − H̃ ′

o(z)
∗H ′

o(z)=
(

1 0
0 1

)
.

Step 3. Transform (G′
e(z) G′

o(z))p×2p and (G̃′
e(z) G̃′

o(z))
∗
2p×p by the column–row product-preserving

transformation σ−1 : (I) : c2 ↔ c3; (II) : r2 ↔ r3. Then we have

(Ge(z) Go(z))

(
G̃e(z)∗

G̃o(z)∗

)
=

⎛
⎜⎜⎝

0 1
(z−1 − 1)

8
0

(1 − z)

8
0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0
1 0
0 0
0 1

⎞
⎟⎟⎠ .

Step 4. Perform row–column product-preserving transformations for (Ge(z) Go(z))2×4 and
(G̃e(z) G̃o(z))∗4×2 to obtain the same multiwavelet matrix coefficients as that in Tan et al. (1999). Here,
we only present the product-preserving transformation steps.

σ1 : (I) : r2 × (−1)+ r1; (II) : c1 + c2;

σ2 : (I) : r1 × (−1); r2 × 2; (II) : c1 × (−1); c2 × 1
2 ;

σ3 : (I) : r1 × (−1)+ r2; (II) : c2 + c1.

After the above three steps of product-preserving transformations, the resultant matrices
(Ge(z) Go(z))2×4 and (G̃e(z) G̃o(z))∗4×2 are

(Ge(z) Go(z))

(
G̃e(z)∗

G̃o(z)∗

)
=

⎛
⎜⎜⎜⎝

1 − z

8
√

2
− 1√

2

1 − z−1

8
√

2

1√
2

1 − z

8
√

2

1√
2

z−1 − 1

8
√

2

1√
2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

− 1√
2

1√
2

0 0

1√
2

1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which align with the results as documented in Tan et al. (1999).

6. Applications to denoising of 1D signals

In this section, we compare the numerical performance of the multiwavelets showed in the examples
with the Daubechies D4 scalar wavelet. D4 wavelet is a commonly used wavelet in signal processing.
These comparisons are performed for five test signals (Blocks, Bumps, Heavy Sine, Doppler and Quad-
chirp) given by MATLAB. All these five signals and noisy signals can be obtained by the function
‘wnoise’ in MATLAB.

Suppose that a signal of interest f has been corrupted by noise; then a signal g is observed as

g[n] = f [n] + σ z[n], n = 1, . . . , N ,

where z[n] is unit-variance Gaussian white noise. So, the key problem is how to recover f from the
samples g[n] as best as possible. Donoho & Johnstone (1994) (see also Donoho (1995)) proposed a
solution via wavelet shrinkage or soft thresholding in the wavelet domain. Donoho and Johnstone’s
algorithm offers the advantages of smoothness and adaptation. Wavelet shrinkage is smooth in the sense
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that the denoised estimate f̂ has a very high probability of being as smooth as the original signal f , in
a variety of smoothness spaces (Sobolev, Holder, etc.). Heuristically, wavelet shrinkage has the advan-
tage of not adding ‘bumps’ or false oscillations in the process of removing noise due to the local and
smoothness-preserving nature of the wavelet transform.

As in the scalar case, low-pass filter H and high-pass filter G consist of coefficients, corresponding
to the scaling and wavelet functions, respectively. But now these coefficients are p × p matrices (in
this paper, p = 2) and during the convolution step they must multiply vectors (instead of numbers).
This means that multifilter banks need p input rows. Usually, there is only one input signal f [n] at
the beginning, so some kind of preprocessing of the data must be done before the implementation of a
multifilter bank. Also, in the reconstruction, multiwavelets require a postprocessing. The postprocessing
is just an inversion of the preprocessing. In our case p = 2 and two data streams enter the multifilter. To
create them from an ordinary single-stream input of length N , there are several possibilities:

(1) Separate odd and even samples (in 1D), or use adjacent rows of the image (in 2D).

(2) Repeat the input stream to produce two length N streams.

(3) Create a consistent approximation that yields two length N/2 streams, and a ‘de-approximation’
that returns a length N stream.

Readers who are interested in a more detailed explanation of the preprocessing may refer to Strela &
Walden (1998) and Tham et al. (2000). Here, we simply use the ‘repeated row’ for denoising. Although
this procedure introduces oversampling of the data by a factor of 2, this scheme is convenient to imple-
ment and suitable for all multifilters. On the other hand, it is known that oversampled data representa-
tions are useful for feature extraction.

The decomposition and reconstruction of multiwavelets are similar with the scalar wavelet. Figure 7
depicts a 1-level subband decomposition and reconstruction framework for a discrete biorthogonal mul-
tiwavlet transform. The left half of the figure represents a 1-level multiwavelet decomposition. First,
an ordinary single-stream signal f is sent to the preprocessing and two data streams are obtained. Then
the two data streams are decomposed by the matrix low-pass filters H and G, respectively, to gener-
ate the next lower resolution. This is followed by subsampling by a factor of 2 to preserve compact
representation of the input signal in a 2-band filtering. For octave-bandwidth decomposition, only the
low-pass subbands can be decomposed iteratively to produce subsequent lower resolutions. Graphi-
cally, a J-level decomposition consists of a cascade of J such 1-level decompositions, each operating
on the low-pass subbands of the previous resolution. The right half of Fig. 7 represents the corre-
sponding 1-level multiwavelet reconstruction. The subbands are first upsampled by a factor of 2 before
they are filtered by the synthesis matrix filters to recover the original single-stream signal. Finally,
the reconstructed two data streams pass the postprocessing and the recovered signal f̂ is obtained.
Both the matrix filter pairs {H , G} and {H̃ , G̃} can be used as the analysis or synthesis filters. But
in general, the smoother one is used as the synthesis filter so that the reconstructed signal can be
more smooth.

The denoising algorithm is described as follows:

(1) Apply the cascade algorithm to get the wavelet coefficients corresponding to g[n].

(2) Choose threshold τ =√2 log(N)σ and apply soft thresholding to the wavelet coefficients, where
N is the sampling points of the g[n] and σ is the Standard Deviation of the white noise. The
scaling coefficients entirely remained alone as these carry low-frequency smooth information.
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Fig. 7. One level of decomposition and reconstruction by using the biorthogonal multiwavelet filter bank.

Table 3 RMSE comparison of the multiwavelets and D4 scalar wavelet for
different test signals

Signals BiGHM SaySong Hardin 2/4SABMF D4

Blocks 0.8142 1.1904 1.2540 1.3575 1.2796
Bumps 0.6717 1.1603 0.9648 1.2198 1.2469
Heavy Sine 0.3992 0.5732 0.6592 0.399 0.6123
Doppler 0.5982 1.0293 1.0358 0.9533 1.1422
Quadchirp 1.5513 1.6219 1.8891 1.9965 2.1856

(3) Invert the cascade algorithm to get denoised signal f̂ [n].

Here, N = 512, the signal-to-noise ratio of the noisy signals is set to 5 dB and the decomposition
level is 5. The root mean squared error (RMSE) was computed for each signal processed by each mul-

tiwavelet. The RMSE is defined as RMSE =
√∑N

k=1(f [n] − f̂ [n])2/N . The results of a typical experi-
ment are shown in Table 3. It can be noted that most of the time the multiwavelets shown in Section 5
performed better than the D4 wavelet in the experiments with different test signals.

7. Conclusion

This paper proposed a novel abstract algebraic method for matrix extension in the construction of
compactly supported biorthogonal multiwavelets. By investigating the properties of canonical-form
polyphase matrices of the scaling vector functions, several solution sets are developed with explicit
formulas of the polyphase matrix extension. Furthermore, the relationship between any two different
extensions resulted from a same extension problem can be established through finite steps of product-
preserving transformations. As a result, the complete solution set for a given matrix extension prob-
lem of compactly supported biorthogonal multiwavelets can be obtained. All these achievements are
based on two theorems we proved: for any given H(z) and H̃(z)∗, they can always be transformed
into a canonical form; then the polyphase matrices Ge(z), Go(z), G̃e(z)∗ and G̃o(z)∗ can be solved from
Q(z)Q̃(z)∗ = I2p×2p and be matrices with Laurent polynomial entries for sure. Construction examples
showed that the proposed abstract algebraic approach is straightforward and explicit. Finally, an appli-
cation of biorthogonal multiwavelet to denoise 1D signals was given. The experimental results showed
that the multiwavelets generally outperform scalar wavelets under different test signals.
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Appendix A. Proof of Lemma 2.3

∀ aij(z) |= 0; because aij(z) is a Laurent polynomial in z, there exists a non-zero term with the minimal
degree of z.

Let Nk be the minimal degree of z for all non-zero entries in the kth row of A(z). Now, for 1 � k � n
and ∀ k, multiplying the kth row of A(z) by z−Nk yields a matrix B(z)= (bij(z))n×n over a Euclidean
subring P[z] of R[z]. Obviously, every entry in B(z) is a polynomial in z and B(z) also remains as a
unimodular square matrix over R[z] by Proposition 2.3.

Appendix B. Proof of Theorem 2.2

From Lemmas 2.2 and 2.3, A(z) can be converted into the diagonal form

diag(d1(z), . . . , dn(z)) where di(z) |= 0 and di(z)|dj(z), if i< j,

by finite steps of elementary transformations, i.e. there are elementary matrices P1, . . . , Pr (correspond-
ing to the row-elementary transformations) and Q1, . . . , Qs (corresponding to the column-elementary
transformations) such that Pr · · · P1A(z)Q1 · · · Qs = diag(d1(z), . . . , dn(z)). Because A(z) ∈ GLn(R[z]),
it is true that diag(d1(z), . . . , dn(z)) ∈ GLn(R[z]) by Proposition 2.3. Therefore, di(z), i = 1, . . . , n, must
be an invertible element of R[z], thus, a unit.

Perform the following row-elementary transformations of Type II for diag(d1(z), . . . , dn(z)):
For 1 � k � n and ∀k, multiplying the kth row by d−1

k (z), we have that diag(d1(z), . . . , dn(z)) can be
converted into In×n, i.e.

Dn(d
−1
n (z)) · · · D1(d

−1
1 (z))Pr · · · P1A(z)Q1 · · · Qs = In×n

⇒ Dn(d
−1
n (z)) · · · D1(d

−1
1 (z))Pr · · · P1A(z)= In×nQ−1

s · · · Q−1
1 = Q−1

s · · · Q−1
1 · In×n.

Therefore,
Q1 · · · QsD

−1
n (dn(z)) · · · D−1

1 (d1(z))Pr · · · P1A(z)= In×n,

which is equivalent to the fact that A(z) can be converted into In×n through finite steps of row-elementary
transformations.

Appendix C. Proof of Theorem 2.3

From Proposition 2.3, A1(z) and B1(z) remain as two matrices over R[z]. From Proposition 2.2, perform-
ing a row–column product-preserving transformation for A(z) and B(z) amounts to left multiplication
of A(z) by an elementary matrix Pm×m and, simultaneously, right multiplication of B(z) by P−1

m×m, i.e.
A1(z)= Pm×mA(z), B1(z)= B(z)P−1

m×m. Thus,

A1(z)B1(z)= Pm×mA(z)B(z)P−1
m×m = Pm×mIm×mP−1

m×m = Im×m.

Similarly, performing a column–row product-preserving transformation for A(z) and B(z), this
theorem also holds.
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