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A stationary viscous jet falling from an oriented nozzle onto a moving surface is studied theoretically.
The fluid is modelled as a Newtonian fluid, and the model for the flow includes viscous effects, inertia
and gravity. We distinguish three flow regimes, calledinertial, viscous-inertialandviscous, according
to which effect is dominant in the momentum transfer through the jet cross section. By studying the
characteristics of the conservation of momentum for a dynamic jet, the boundary conditions for each
flow regime are derived, and the flow regimes are characterized in terms of the process and material
parameters. The model is solved by a transformation into an algebraic equation. The parameter regions of
the three flow regimes, and their boundaries, are confirmed experimentally. Influences of surface tension,
bending stiffness and air drag are presented.
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1. Introduction

During the fall under gravity of a viscous jet from an oriented nozzle onto a moving surface, called the
belt, three flow regimes can be observed. In this paper, we characterize the three regimes by the domi-
nant effect in the momentum transfer through the jet cross section providing us the classificationinertial,
viscous-inertialor viscousand simultaneously by the convexity of the jet shape (concave, straight verti-
cal and convex). As we will show, the convexity of the jet shape is related to the dominant effect in the
momentum transfer.

In the first flow regime, the jet shape is concave, apart from a boundary layer at the belt and aligned
with the nozzle orientation and resembles a ballistic trajectory; see Fig.1(a and b). We call this flow
regime asinertial and the associated jet as aninertial jet because the inertia dominates in the momentum
transfer through the jet cross section. The inertial jet occurs for large flow velocity at the nozzle with
respect to the velocity of the belt and small viscosity.

The jet in the second flow regime has a straight, vertical shape, apart from boundary layers at the
nozzle and at the belt; see Fig.1(c). We call this flow regimeviscous-inertial, and the associated jet a
viscous-inertial jetbecause the viscosity dominates at the nozzle and inertia at the belt. The viscous-
inertial jet happens for large falling heights, large viscosity and intermediate values of the flow velocity
at the nozzle with respect to the velocity of the belt.

In the third flow regime, apart from a boundary layer at the nozzle, the jet shape is convex, and the
jet touches the belt tangentially; see Fig.1(d). This flow regime we callviscous, and the associated jet a
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THREE FLOW REGIMES OF VISCOUS JET FALLING ONTO A MOVING SURFACE 197

FIG. 1. Typical jet shapes. The belt, shown at the bottom of the images, moves from left to right. The jet shape changes from
concave (Fig.1(a and1b)) to vertical (Fig.1(c)), and from vertical to convex (Fig.1(d)), as the belt velocityvbelt is increased.
Parameters are given in Table1 under Sequence 2.

viscous jet1 because the viscosity dominates in the momentum transfer. The viscous jet occurs for high
fluid viscosity, small velocity at the nozzle with respect to the velocity of the belt, and small falling
height.

In this paper, we address the characterization of the three flow regimes. For this, we choose a ‘string
model,’2 in which the jet has no resistance to bending. We will determine when and how the system
parameters, such as the nozzle and belt orientations and velocities, influence the jet shape and investi-
gate the capabilities and limitations of this jet model. This work should be seen as a continuation and
generalization of our previous publication on the regime that we now call viscous jet (Hlod et al., 2007).

1The term ‘viscous jet’ is often used to indicate that the fluid in the jet is viscous, and that the viscosity plays an important
role. In the current setup, we prefer to use the term ‘viscous’ to indicate that the viscosity is the dominant force in the momentum
transfer.

2This name for the jet model is used because of the analogy to elastic strings; seeMarheineke & Wegener(2009).
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The fall of jets or sheets of viscous fluids from a nozzle oriented vertically down onto afixedsurface
has been widely studied. Here, one can observe unstable behaviour such as coiling for round jets and
folding for planar sheets; see, for example,Taylor (1969), Skorobogatiy & Mahadevan(2000), Yarin
& Tchavdarov(1996), Ribe(2003, 2004), Cruickshank(1980) andTchavdarovet al. (1993). Vertically
falling jets have been studied theoretically and experimentally inClarke(1966, 1968), Adachi (1987)
andSauteret al. (2005). Experimental investigations of steady and unsteady flows of jets falling under
gravity onto amovingsurface from a vertical nozzle were presented inChiu-Webster & Lister(2006),
Ribeet al. (2006), Hlod et al. (2007) andMorris et al. (2008).

Chiu-Webster & Lister(2006) experimentally study the same set-up as in this paper, only consider-
ing a nozzle pointing vertically downwards, and concentrating on the resulting rich variety of patterns
laid down by the jet. The patterns are characterized and parameter regions for each pattern are found
experimentally. In the second, theoretical, part of (Chiu-Webster & Lister, 2006) the curved steady jet
(viscous in our classification) is modelled using a similar string model that also includes surface tension.
The model equations have been solved only for a subset of the admissible parameter space. InHlod et al.
(2007), we showed that for the jet model ofChiu-Webster & Lister(2006), but without surface tension,
a solution exists only in a subset of the parameter space; we conjecture that the same holds for the model
with surface tension, and this is corroborated by numerical evidence inChiu-Webster & Lister(2006).

In other work, varying nozzle angles are considered, e.g.Marheineke & Wegener(2009), Panda
(2006); Pandaet al.(2008), Wallworket al.(2002), Parauet al.(2006, 2007), Decentet al.(2002), Uddin
et al. (2006), Partridgeet al. (2005) andWonget al. (2004). In all these publications, it is assumed that
the jet orientation at the nozzle is aligned with the nozzle orientation. However, a solution for a string
jet model with the jet aligned with the nozzle may not exist as is shown inGötzet al. (2008).

At this point, three natural questions arise, namely why does a solution for the string jet model not
exist for all parameter values, what can be done to obtain a jet solution outside the existence parameter
regions presented inChiu-Webster & Lister(2006), Hlod et al. (2007) andGötz et al. (2008), and what
is the role of the assumption of alignment at the nozzle or the belt? We answer these questions by de-
veloping a model that fully describes the three flow regimes. For the jet, we use a model that includes
effects of inertia, viscosity and gravity but neglects surface tension, bending stiffness and air drag. The
fluid is considered to be incompressible, isothermal and Newtonian. We allow the nozzle orientation to
vary between horizontal and vertically down. By studying the characteristics of the equation of conser-
vation of momentum, we determine the parameter regions for each flow regime. Consideration of the
characteristics as being the directions of information propagation explains why and when each of the
three flow regimes occurs and gives the correct boundary conditions for each flow regime. The model
presented in this paper can also be used to describe the fall of sheets onto a moving surface (curtain
coating) (seeDysonet al., 2005; Marstonet al., 2006, 2008).

We also confirm the existence of the three flow regimes experimentally. A comparison of the touch-
down points with the belt for different belt velocities, while keeping the rest parameters fixed, allows us
to indicate the regions of the three flow regimes. We also compare the jet shapes obtained experimen-
tally and theoretically, which reveals substantial differences. Including either surface tension, or bending
stiffness, or air drag alone does not explain the shapes mismatch. Suggestions are made how to change
the model and experimental setup to get a better jet shapes agreement.

The structure of the paper is as follows. The background of the problem is presented in Section2.
In Section3, the model equations are derived and simplified to a first-order differential equation on
an unknown domain. The analysis of the characteristics of the conservation of momentum equation for
dynamic jets in order to derive correct boundary conditions is done in Sections4 and5, and in Section6,
the results from the model are presented. Experiments confirming existence of the three flow regimes
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THREE FLOW REGIMES OF VISCOUS JET FALLING ONTO A MOVING SURFACE 199

and comparison with the theory are presented in Section7. The characteristic features of the three flow
regimes are summarized in Section8, and conclusions are made in Section9.

2. Background of the problem

The motivation for this study came from an industrial application of rotary spinning of aramid fibers.
Here, we briefly describe the rotary spinning process. For a detailed description, we refer toHlod (2009),
Kolk (2005) andden Deckeret al. (2004).

The rotary spinning setup consists of two cylinders. The smaller one (therotor) is placed inside the
larger one (thecoagulator), so that their axes are vertical and coincide (Fig.2). The rotor is filled with
the fluid, a polymer solution, and is rotated while the coagulator is fixed. The polymer solution is forced
through nozzles in the lateral surface of the rotor and moves as a jet towards the coagulator where it is
captured by a water curtain.

The first published model of rotary spinning was inden Deckeret al. (2004). There the jet between
the rotor and the coagulator was described using the effects of extensional viscosity, inertia and centrifu-
gal and Coriolis forces; gravity, air drag, surface tension, viscoelasticity, bending resistance and thermal
effects were neglected. It was assumed that the jet leaves the nozzle of the rotor radially and that the
fluid is Newtonian. In such a way one obtains a simple jet model in 2D (the horizontal plane) that gives
some insight into the rotary spinning. However, this model did not produce a satisfactory solution for
the actual process parameters —(seeden Deckeret al., 2004). Experiments show that the jet orientation
at the rotor is not always radial and depends on the process parameters.

A second step was done inKolk (2005) where, based on visual observations, the assumption that the
jet leaves the nozzle radially was dropped. Using further, the same model asden Deckeret al. (2004)
did, Kolk obtained a solution in which the jet orientation at the nozzle is not radial and depends on the
process parameters.

However, the mechanisms determining the angle at which the jet leaves the rotor were not under-
stood. In this paper, we use the same model for the jet but change the setup to a simpler and more

FIG. 2. A rotary spinning process. This setup provided the original motivation for the simpler setup of this paper and is studied
in Hlod (2009).
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accessible one, the jet falling onto a moving belt under gravity. The more complex problem of rotary
spinning is discussed inHlod (2009), where the same jet model is used.

3. Modelling

In this section, we present the model of a viscous jet falling onto a moving belt. To model the flow, we use
a thin-jet approximation (a string model) and include effects of inertia, viscous extension and gravity. We
assume the fluid to be incompressible, isothermal and Newtonian. We neglect surface tension, bending
resistance and air drag; therefore any bending or buckling boundary layers at the nozzle or at the belt
are disregarded. The jet is described by the equations of conservation of mass and momentum. First,
we formulate the equations for the dynamic jet, which are used in Section5 to justify our choice of
boundary conditions. Next, we partly solve the steady jet equations and make an analysis showing that
only three possible situations for the balance of the momentum transfer through the jet cross section
can exist: inertial, viscous-inertial and viscous. Finally, we reformulate the problem by deriving an
equivalent algebraic equation which is convenient for further analysis.

The jet is modelled as a curve in thex, z-plane of unknown lengthsend (see Fig.3). The curve is
parameterized by its arc lengths, with the origins = 0 at the nozzle ands = send at the touchdown
point at the belt. The position of a certain points of the jet at timet is described by its position vector
r = r(s, t) with respect to the origin 0, which is chosen at the nozzle point.

Figure3 shows various geometric parameters. A local coordinate system is constructed at each point
of the jet with as basis vectors the tangent and normal vectorset anden. The angle between the tangent
vector and horizontal direction isΘ, the horizontal distance between the nozzle and the touchdown point
at the belt isxend, and the flow velocity at a points of the jet isv = v(s, t). At the touchdown point, the
jet has the same velocity as the beltvbelt, and the flow velocity at the nozzle isvnozzle.

The system of equations describing a thin dynamical jet in 2D can be found in variety of publications,
e.g.Rooset al. (1973), Yarin (1993) andEntov & Yarin (1980). It consists of the laws of conservation
of mass and momentum

At + (Av)s = 0, (3.1)

ρA(r t t + rs(vt + vvs) + v2rss + 2vrst) = Psrs + Prss + K ′, (3.2)

centering

FIG. 3. Model of a fall of a jet of viscous fluid onto a moving surface.
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THREE FLOW REGIMES OF VISCOUS JET FALLING ONTO A MOVING SURFACE 201

whereA = A(s, t) is the cross-sectional area,P = P(s, t) the longitudinal force andK ′ = K ′(s, t) the
external force per unit length of the jet. Subscripts denote differentiation. The longitudinal forceP is
given by a constitutive law, and in the case of a Newtonian viscous fluid, it is equal to

P = 3νρvsA. (3.3)

Finally for K ′, we take

K ′ = ρAg, (3.4)

the gravity force per unit of length of the jet (external air drag is neglected).
The stationary versions of (3.1) and (3.2) together with (3.3) and (3.4), and the condition fors as the

arc length are

A(rsvvs + v2rss) = 3ν(vsArs)s +Ag, (3.5)

(Av)s = 0, (3.6)

|rs| = 1. (3.7)

Thus, we have three differential equations, (3.5–3.7), for the unknownsr , v andA. Next, we describe
the boundary conditions.

For the velocityv, we prescribe two boundary conditions: ats = 0, the flow velocity at the nozzle
is

v(0) = vnozzle, (3.8)

while ats = send, the jet sticks to the belt, so that

v(send) = vbelt. (3.9)

The boundary condition forA follows form the known cross-sectional area of the nozzle as

A(0) =
π

4
d2

nozzle. (3.10)

The fixed vertical distance between the nozzle and the belt gives the additional constraint
∫ send

0
sinΘ(s)ds = L . (3.11)

To make the system (3.5–3.11) complete we need boundary conditions forr . A well-known rule of
thumb states that the second-order nature of (3.5) implies that two lateral boundary conditions forr
are necessary and sufficient; however, as we shall show in Section5, in this case, the situation is more
subtle, and while one boundary condition is always necessary, whether or not the second condition is
also required depends on the solution.

Since the positionr is with respect to the fixed nozzle, we have one boundary condition forr

r(0) = 0. (3.12)

The second boundary condition is chosen later in this section and is justified in Section5. By integrating
(3.6), using (3.8) and (3.10), we find that

A(s) =
F

v(s)ρ
,
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202 A. HLOD ET AL.

where the mass flux is given byF = ρvnozzleπd2
nozzle/4. We eliminateA from (3.5) to obtain

rsvs + vrss = 3ν
(
rs

vs

v

)

s
+

g
v
. (3.13)

Next, we introduce a new variableξ by

ξ = v − 3ν
vs

v
, (3.14)

which represents the scaled momentum transfer through a jet cross section and plays a crucial role in
our further analysis. By use ofξ , we write (3.13) as

(ξ rs)s =
g
v
. (3.15)

Usinget = rs, and(et )s = −Θsen, we can write (3.15) in components as

ξs =
g sin(Θ)

v
, (3.16)

and

Θs =
g cos(Θ)

ξv
. (3.17)

Equation (3.17) requires a boundary condition forΘ; this is related to the question of boundary condi-
tions forr .

We now scale the system as follows: the lengths is scaled with respect to 3ν/vnozzle, and the velocity
v with respect tovnozzle. Then, (3.8), (3.9), (3.11), (3.14), (3.16) and (3.17) become

ξs =
Asin(Θ)

v
, (3.18)

Θs =
Acos(Θ)

ξv
, (3.19)

ξ = v −
vs

v
, (3.20)

v(0) = 1, (3.21)

v(send) = Dr, (3.22)
∫ send

0
sin(Θ(s))ds= Re. (3.23)

Here,A = 3gν/v3
nozzle, Re= vnozzleL/(3ν) is the Reynolds number, Dr= vbelt/vnozzle is the draw

ratio, and the scaledsendbecomessendvnozzle/(3ν). The dimensionless numberA is related to the Froude
number Fr= vnozzle/

√
gL and Re asA = 1/(ReFr2). After scaling, the system is described in terms of

three positive dimensionless numbers, which define the parameter spaceP as

P = {(A, Re, Dr): A > 0, Re> 0, Dr > 0}. (3.24)

The nozzle orientationαnozzleonly appears in the boundary condition forΘ for the inertial jet, see (4.14)
further on, and is considered to be fixed.
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The system (3.18–3.23), describing stationary solutions, is the main mathematical problem of this
paper.

4. Initial analysis and additional boundary conditions

By replacing the material coordinates by the time variableτ , according to

ds = v(τ)dτ, (4.1)

the system (3.18–3.23) becomes

ξτ = Asin(Θ), (4.2)

Θτ =
Acos(Θ)

ξ
, (4.3)

ξ = v −
vτ

v2
, (4.4)

v(0) = 1, (4.5)

v(τend) = Dr, (4.6)
∫ τend

0
sin(Θ(τ))v(τ )dτ = Re. (4.7)

Here,τend is the result of the coordinate transformation (4.1) of send =
∫ τend

0 v(τ)dτ . Next, we solve
(4.2) and (4.3), using the first integral

ξ sin(Θ) = Aτ + c1 (4.8)

to obtain

ξ = ±
√

A2τ2 + 2Ac1τ + c2, (4.9)

Θ = ± arcsin

(
Aτ + c1√

A2τ2 + 2Ac1τ + c2

)

. (4.10)

Here,c1 andc2 are constants to be determined later.
In the analysis, we restrict ourselves to solutions withΘ ∈ [0, π/2]. We conclude from (4.2) that

ξ is a strictly increasing function. Therefore, we distinguish three possible situations for the sign ofξ :
always positive, a sign change from negative to positive and always negative, i.e.

0< ξ(0) < ξ(τend), (4.11)

ξ(0)6 06 ξ(τend), (4.12)

ξ(0) < ξ(τend) < 0. (4.13)

If (4.11) holds, then it follows from (4.3) thatΘ is a strictly increasing function implying that the jet
has a concave shape. As will be justified in Section5, we prescribe the nozzle orientation angle as the
boundary condition forΘ, i.e.

Θ(0) = αnozzle. (4.14)
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204 A. HLOD ET AL.

Substitution of (4.14) into (4.9) and (4.10) gives

ξ =
√

A2τ2 + 2A
√

c2 sin(αnozzle)τ + c2, (4.15)

Θ = arcsin



 Aτ +
√

c2 sin(αnozzle)√
A2τ2 + 2A

√
c2 sin(αnozzle)τ + c2



 . (4.16)

Because (4.11) implies that inertia dominates in the jet, we refer to a jet satisfying (4.11) as an inertial
jet; as found above, the inertial jet has a concave shape.

For (4.12) to hold, there must exist aτ ∗ ∈ [0, τend] such thatξ(τ ∗) = 0. Then from (4.3), it follows
thatΘ(τ ∗) = π/2. Substitutingτ ∗ into (4.10), we have

Aτ ∗ + c1√
A2(τ ∗)2 + 2Ac1τ ∗ + c2

= 1, (4.17)

giving c2
1 = c2. This implies that

Θ ≡ π/2, (4.18)

for all τ ∈ [0, τend], and hence the jet is vertical, and

ξ = Aτ + c1. (4.19)

For ξ obeying (4.12), we obtainξ(τ ) = Aτ −
√

(c2)2. Because (4.12) implies that the viscosity dom-
inates at the nozzle and inertia at the belt, we refer to a jet satisfying (4.12) as a viscous-inertial jet.
Hence, the viscous-inertial jet has a straight vertical shape. Note that for the viscous-inertial jet, as will
be shown in Section5, no boundary condition forΘ is necessary.

If (4.13) holds, then it follows from (4.3) thatΘ is a strictly decreasing function. In this case, the jet
has a convex shape. As will be justified in Section5, we require tangency for the jet at the belt, i.e.

Θ(τend) = 0. (4.20)

Then

ξ = −
√

A2τ(τ − 2τend) + c2, (4.21)

Θ = arcsin

(
A(τend− τ )

√
A2τ(τ − 2τend) + c2

)

. (4.22)

Because (4.13) implies that viscosity dominates everywhere in the jet we call a jet for which (4.13) holds
a viscous jet, inferring that the viscous jet has a convex shape.

By substituting the found solutions forξ andΘ into (4.4–4.7) for the three situations (4.11–4.13)
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we obtain

v −
vτ

v2
=






√
A2τ2 + w2 + 2Aτw sin(αnozzle) inertial jet,

w + Aτ viscous-inertial jet,

w
√

A2τ(τ − 2τend)/w2 + 1 viscous jet,

(4.23)

v(0) = 1, (4.24)

v(τend) = Dr, (4.25)

Re=






∫ τend
0

Aτ+w sin(αnozzle)√
A2τ2+w2+2Aτw sin(αnozzle)

v(τ )dτ inertial jet,
∫ τend

0 v(τ)dτ viscous-inertial jet,
∫ τend

0
A(τend−τ )√

A2τ(τ−2τend)+w2
v(τ)dτ viscous jet,

(4.26)

wherew = ξ(0). We refer to the situations of inertial, viscous-inertial and viscous jets as inertial,
viscous-inertial and viscous flow regimes, respectively.

For givenw ∈ R and flow regime, the problem (4.23–4.25) has a solutionv(τ ; w) andτend(w),
whereτend(w) satisfies (4.25). Here, we assume that for anyw, (4.25) has only one solution, which is
not always true. However, this allows us to illustrate a solution procedure.

Substitutingv(τ ; w) andτend(w) into the integrals (4.26), we obtain the functions ofw:

I inert(w) =
∫ τend(w)

0

Aτ + w sin(αnozzle)√
A2τ2 + w2 + 2Aτw sin(αnozzle)

vinert(τ ; w)dτ inertial jet,

Iv-i(w) =
∫ τend(w)

0
vv-i(τ ; w)dτ viscous-inertial jet,

Ivisc(w) =
∫ τend(w)

0

A(τend(w) − τ )
√

A2τ(τ − 2τend(w)) + w2
vvisc(τ ; w)dτ viscous jet.

(4.27)

Here, we denote byvinert(τ ; w), vv-i(τ ; w) and vvisc(τ ; w), the solution of (4.23) for a inertial,
viscous-inertial and viscous jet, respectively. According to (4.11–4.13), I inert(w) is defined forw >
0, and Ivisc(w) and Iv-i(w) for w 6 0. With (4.27), solving (4.23–4.26) is equivalent to solving the
algebraic equation

I?(w) = Re, (4.28)

where ? stands for an unknown jet flow regime. Therefore, a study of existence and uniqueness of a
jet solution results into a study of the existence and uniqueness of a solution to the algebraic equation
(4.28).

At this point, we briefly recapitulate the main steps in our solution procedure. We do this for the
inertial flow; the other cases are analogous. The steps are

1. Solvev = vinert(τ ; w) from (4.23)1, with use of the boundary condition (4.24).

2. Findτend(w) from (4.25) asvinert(τend(w); w) = Dr.

3. CalculateI inert(w) from (4.27).

4. Solvew from (4.28).
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centering

FIG. 4. Parameter regions for three flow regimesPinert, Pv-i andPvisc.

The partitioning of the parameter spaceP into the regions of inertialPinert, viscous-inertialPv-i and
viscousPvisc jets is presented in Fig.4. The partitioning follows from the solutions of (4.23–4.26) with
the additional conditionξ(τend) = 0 for the border betweenPv-i andPvisc, andξ(0) = 0 for the border
betweenPinert andPv-i .

For any set of parameters fromPinert, or Pv-i or Pvisc, a corresponding solution of (4.23–4.26)
exists. This solution is unique in the case of viscous-inertial and viscous flow. For the inertial flow, a
solution might not be unique when the nozzle does not point vertically down and Dr> 1. In this case
up to two solutions exist for an inertial jet and one solution for a viscous or viscous-inertial jet. The
questions of existence and uniqueness are fully treated inHlod (2009, Section 3.6).

In the next section, we justify our choice of the boundary conditions forΘ, i.e. (4.14) and (4.20),
for inertial and viscous flow, and we explain why no boundary condition is needed forΘ in case of
viscous-inertial flow.

5. Justification of boundary conditions for Θ

In this section, we explain our choice of boundary conditions forΘ made in the previous section. We
use the highest-order part, the principal part, of the conservation of momentum equation (3.2)

r t t + 2vrst + vξ rss = [r t t + 2vrst + v2rss] − vsrss. (5.1)
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THREE FLOW REGIMES OF VISCOUS JET FALLING ONTO A MOVING SURFACE 207

This equation is of hyperbolic type in the neighbourhood ofs = send, if ξ(send) is close to zero, and in
the neighbourhood ofs = 0, if ξ(0) is close to zero becausevs = v2 + ξv > 0 in theses situations.
We consider the direction of the characteristics of (5.1), either ats = send if ξ(send) changes sign or
at s = 0 if ξ(0) changes sign. This directly yields the number of boundary conditions, which must be
prescribed ats = sendor s = 0. The reason is that the number of boundary conditions at any point of the
boundary is equal to the number of characteristics pointing into the domain at that point; (seeGodlewski
& Raviart, 1996, p. 417), which follows from the concept of ‘domain of dependence’ (seeCourant &
Hilbert, 1989, p. 438–449, for more details).

The characteristic equation (seeDavis, 2000, p. 57) for (5.1) is

z2 − 2vz + v2 − vs = 0, (5.2)

wherez is the velocity of a characteristic. Equation (5.2) has the solutions

z1 = v +
√

vs, z2 = v −
√

vs. (5.3)

According to (5.3) and (3.20), the directions of the characteristics of (5.1) depend on the sign ofξ as
follows:

1. If ξ > 0 thenz1 > 0 andz2 > 0, i.e. both characteristics point to the right.

2. If ξ = 0 thenz1 > 0 andz2 = 0, i.e. one characteristic points to the right and one is stationary.

3. If ξ < 0 thenz1 > 0 andz2 < 0, i.e. one characteristic points to the left and one to the right.

From the characterization of the flow regimes (4.11–4.13) we infer that:

• At s = 0, two boundary conditions forr(s, t) are necessary in case of an inertial jet (ξ(0) > 0), and
only one in case of a viscous-inertial or viscous jet (ξ(0) 6 0).

• In case of a viscous jet, one boundary condition forr is necessary ats = send (ξ(send) < 0), and
none in case of viscous-inertial or inertial jets (ξ(send) > 0).

For all three situations, we prescribe the nozzle position. In addition, for the inertial jet, the nozzle
orientation is prescribed by (4.14), and for the viscous jet, the tangency condition (4.20) with the belt is
prescribed. This justifies our choice of boundary conditions (4.14) and (4.20) for the stationary problem.

The analysis of characteristics, as directions of information propagation, explains why the nozzle
orientation influences the jet shape only in the case of inertial flow, and why the belt orientation influ-
ences the jet shape only in case of viscous flow.

• In inertial flow, all information about the jet shape travels from the nozzle to the belt. Therefore, not
only nozzle position but also nozzle orientation is relevant for the jet. In addition, no information on
angle travels back from the belt.

• In viscous-inertial flow, only one characteristic (at the nozzle) points inside the domain. Therefore,
no information about the nozzle orientation or the belt movement direction influences the jet shape.
Thus, in viscous-inertial flow, the nozzle and the belt orientations are irrelevant for the jet.

• In viscous flow, one characteristic points inside the domain at the nozzle and one at the belt. Hence,
information about the direction of the belt movement influences the jet shape, and therefore, the belt
orientation becomes relevant in viscous flow.
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6. Results from the model

In this section, we present some results from this model. We analyse the partitioning of the parameter
space. Next, we investigate changes of the flow type if one of the physical parameters (L, ν, vbelt,
vnozzle) is varied. We describe the trajectories of the process parameters in the parameter spaceP,
and we illustrate the jet shape evolution. Note that the only possible transitions between flow types are
betweenPinert andPv-i , and betweenPv-i andPvisc, as is shown in Fig.4.

The projection of the regions for the three flow regimes onto the(A, Re)-plane is depicted in Fig.5,
and following is valid for all values of Dr. We observe a region{A < A∗, Re > R1(A)} where the jet
is inertial, and a region{A > A∗, Re> R2(A)} where it is viscous-inertial. In the region betweenR1,
R2 andR3 inertial or viscous-inertial flow is possible but there can be no viscous flow. Finally, in the
region{A > 0, Re< R3(A)}, all three flow regimes are possible. Hence, it is only in the latter region,
where Re< R3(A) < 1, that a viscous jet can occur.

The parameter regions projection onto the(A, Dr)-plane is depicted in Fig.6; and the following
holds for all Re. We observe that for{A > A∗, Dr < 1} only an inertial jet is possible, while inertial or

FIG. 5. Regions ofA and Re with possible flow regimes for all Dr.

FIG. 6. Regions ofA and Dr with possible flow regimes for all Re.
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viscous-inertial flow is possible for{A > A∗, Dr < 1}. In the region{A > A∗, Dr > D(A)}, viscous or
viscous-inertial flow is possible, while in the rest of region{Dr > 1}, all three flow regimes are possible.
Hence, a viscous jet can only occur if Dr> 1.

Next, we study the change of the jet if one of the physical parameters varies as to change the flow
type from viscous to viscous-inertial. For a reference configuration, we take the physical parameters
L = 1 cm,ν = 0.047 m2/s,vbelt = 1.4 m/s andvnozzle= 1 m/s, for which the jet is viscous (recall that
for the viscous and viscous-inertial flow regimesαnozzleis not relevant). Then, if we increaseL, decrease
ν, decreasevbelt, or increasevnozzle, eventually the jet flow changes from viscous to viscous-inertial. The
corresponding curves in the parameter spaceP are indicated in Fig.7.

Changes of the jet shape while only one of the physical parametersL, ν, vbelt or vnozzle varies
as described above are shown in Fig.8(a–d), respectively. In Figs7 and 8, we see that if the point
(A, Re, Dr) approaches the boundary ofPvisc, the jet shape becomes vertical. If(A, Re, Dr) is very
close to the boundary ofPvisc the jet shape is almost vertical, except for the small region near the belt
where the jet rapidly bends to the horizontal belt direction.

The analysis of the parameter region for the inertial jet is more complex than that for the viscous
jet. In case{A > A∗, Dr < 1} (‘Only inertial jet’ in Fig. 6), the flow is inertial for allL. Similar, if
{A < A∗, Re> R1(A)} (‘Only inertial jet’ in Fig.5), the flow is inertial for allvbelt. In a situation when
ν decreases orvnozzle increases,A approaches zero and Re approaches infinity sinceA = 3gν/v3

nozzle,
and Re= vnozzleL/(3ν). Thus, eventually the point(A, Re) enters the ‘Only inertial jet’ region in
Fig. 5. Hence, if the jet is not in the inertial flow regime, decreasingν or increasingvnozzlemakes the jet
to become inertial eventually.

To illustrate the change of flow from inertial to viscous-inertial, while only one of the parameters
L, ν, vbelt andvnozzlevaries, we take the reference valuesL = 30 cm,ν = 0.2 m2/s,vbelt = 2 m/s and
vnozzle = 1.5 m/s. Then, if we decreaseL, increaseν, increasevbelt or decreasevnozzle eventually the
jet flow changes from inertial to viscous-inertial. The curves in the parameter spaceP are indicated in
Fig. 9.

FIG. 7. Traces of the point(A, Re, Dr) as we change one of the physical parameters (L increases,ν decreases,vbelt decreases,
vnozzleincreases). The curves originate at the same point in the regionPvisc and eventually leavePvisc by crossing the separating
grey surface at the points indicated by the dots.
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FIG. 8. Convex shapes of the viscous jet for different values ofL, ν, vbelt andvnozzle. The reference values areL = 1 cm,
ν = 0.047m2/s,vbelt = 1.4 m/s andvnozzle= 1 m/s.

FIG. 9. Curves in the parameter spaceP as we change one of the parameters (L decreases,ν increases,vbelt increases,vnozzle
decreases). The curves originates at the same point in the regionPinert and eventually leavePinert by crossing the separating
surface at the points indicated by the dots.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/77/2/196/675594 by guest on 23 April 2024



THREE FLOW REGIMES OF VISCOUS JET FALLING ONTO A MOVING SURFACE 211

FIG. 10. Concave shapes of the inertial jet for different values ofL, ν, vbelt, vnozzle. The reference values areL = 30 cm,
ν = 0.2 m2/s,vbelt = 2 m/s andvnozzle= 1.5 m/s. The nozzle orientation isαnozzle= π/4.

Changes of the jet shape forαnozzle = π/4, while only one of the physical parametersL, ν, vbelt,
or vnozzle varies as described above are shown in Fig.10(a–d), respectively. In Figs9 and10, we see
that if the point(A, Re, Dr) approaches the boundary ofPinert, the jet shape becomes more vertical. If
(A, Re, Dr) is very close to the boundary ofPinert the jet shape is almost vertical except for the small
region near the belt where the jet rapidly bends from the nozzle direction to an almost vertical one.

The analysis above shows that the transition between the viscous and the inertial flow regimes as
parameters continuously vary is only possible via the viscous-inertial flow.

7. Experiments

In this section, we describe experiments of the fall of a thin jet onto a moving belt. The main goal of
these experiments is to confirm the existence of the three flow regimes and the position, as a function
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of vbelt, of the interfaces between them. Two values ofvnozzle, L, dnozzle andαnozzle are used for two
sequences of experiments. In each sequence,vbelt is allowed to vary. For the details of these and other
experiments, we refer toHlod (2009).

A viscous fluid, polybutene Indopol H-100, is pumped to a nozzle and allowed to fall from the
nozzle onto a moving belt (see Fig.3). The belt is wrapped around two parallel cylinders so that the belt
is horizontal. The left cylinder is connected to an electric motor to move the belt from the left to the
right with a constant speed.

The nozzle is placed above the belt. A screw pump producing a constant flow rate is connected to the
nozzle. The flow rate was measured by weighing the fluid collected from the nozzle during 30 s. In the
experiments, two different nozzles were used, with diameters of 1 mm and 0.4 mm. The experimental
setup allows us to change the nozzle position and orientation, belt velocity and nozzle flow velocity. The
parameter values of the two sequences of experiments are given in Table1.

First, we describe a typical sequence of experiments. We start withvbelt close to zero and make sure
thatL andvnozzleare chosen such that the shape of the jet is concave resembling a ballistic trajectory (see
Fig. 1(a)). To obtain the concave jet shape, the nozzle should not point down vertically, and therefore
we putαnozzle< π/2. Next, we gradually increasevbelt and study the evolution of the jet shape.

For smallvbelt, the jet shape is concave with an unsteady region near the belt (see Fig.1(a)). By
increasingvbelt, we observe that the unsteady region near the belt transforms into a stable bending
region where the jet bends to the horizontal belt direction (see Fig.1(b)). The jet shape in this region
resembles the backward-pointing heel, reported for the vertically falling jet inChiu-Webster & Lister
(2006).

When we increasevbelt further, the jet shape approaches the vertical direction. In this case, the
contact point with the belt approaches the vertical projection of the nozzle position. As a result, forvbelt
large enough, the main part of the jet between the belt and the nozzle is purely vertical (see Fig.1(c)).
The bending region near the belt remains, and a new bending region near the nozzle appears. Near the
nozzle, the jet bends from the nozzle orientation to the vertical direction.

Further increase invbelt results in the disappearing of the local region near the belt, where the jet
bends from the vertical to the horizontal belt direction. The jet shape becomes convex everywhere,
except for a bending region near the nozzle (see Fig.1(d)). The touchdown point moves away from the
nozzle in the direction of the belt motion asvbelt increases.

Summarizing the results of the experiments, we observe a concave jet shape for smallvbelt, except

TABLE 1 Values of the experimental parameters

Parameter name Sequence 1 Sequence 2Units
Belt velocity vbelt 0.100–5.622 0.093–3.200 m/s
Flow velocity at nozzle vnozzle 1.147 1.061 m/s
Distance between belt and nozzleL 0.041 0.054 m
Nozzle orientation† αnozzle 5◦ 37.3◦

Kinematic viscosity of fluid ν 0.047 0.047 m2/s
Fluid density ρ 880 880 kg/m3

Nozzle diameter dnozzle 0.4 1 mm

†The angle between the nozzle orientation and the horizontal direction, positive for downwards-pointing
nozzle.
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for a small bending or unstable region near the belt. With increasingvbelt, the jet shape becomes vertical,
except for small bending regions near the nozzle and the belt. Further increase ofvbelt leads to a convex
jet shape, except for a small bending region near the nozzle. This gives a characterization of the jet flow
by its shape, i.e. concave, vertical and convex, which, as it was shown in Section3, is related to the
characterization based on the dominant effect in the momentum transfer through the jet cross section,
i.e. inertial, viscous-inertial and viscous, respectively.

A convenient way to quantify the jet behaviour is by the horizontal positionxend of the touchdown
point at the belt. For the jet with smallvbelt, the contact point is away from the nozzle in the direction
of the nozzle. With increasingvbelt, the touchdown point moves first towards the nozzle position (xend
decreases) until the jet becomes vertical (xend = 0), stays vertical for some range of values ofvbelt and
then moves away from the nozzle position in the direction of the belt motion (xend increases).

Figure11shows this dependence ofxendonvbelt. The graph suggests that the first five dots are in the
inertial flow regime, the sixth, withxend = 0, represents a viscous-inertial flow, and the remaining ones
(7th and higher) are in the viscous flow regime. Thus, this corresponds to the regions ofvbelt predicted
by the model.

A comparison between the theoretical predictions ofxend and the one from experiments is depicted
in Fig. 12 and shows a mismatch for the jets in inertial and viscous regimes. The model predictsxend,
on average, three times larger than obtained experimentally.

FIG. 11. Positions of the touchdown pointxend for differentvbelt indicated by•, obtained from Sequence 1. The vertical lines
indicate the model predictions of regions ofvbelt for the three flow regimes.

FIG. 12. Comparison of the relations betweenvbelt andxendas obtained from the model (solid grey line), and from Sequence 1.
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FIG. 13. Comparison of the inertial jet shapes obtained theoretically and experimentally for Sequence 1 andvbelt = 0.81 m/s.

FIG. 14. Comparison of the viscous jet shapes obtained theoretically and experimentally for Sequence 1 andvbelt = 4.398 m/s.

We look for the cause of these differences in the effects which we did not include in our model, such
as air drag, bending stiffness and surface tension.

We use the model with surface tension fromChiu-Webster & Lister(2006). The surface tension
coefficient is 0.027 N/m. The jets in the inertial and viscous regimes, obtained from the model with
surface tension, do not show better agreement with the experiments (see Fig.15(a and b). Including the
effect of surface tensions to the model gives a slightly smallerxend and the overall inertia and viscous
jet shapes differ very little.

Using the model with bending stiffness fromRibe et al. (2006) for the jets in inertial and viscous
regimes, we obtain shapes similar to those from our model besides small bending regions at the belt
in the inertial regime and at the nozzle in the viscous regime. However, the overall shape of the jets
does not explain the difference with the experimental ones (see Fig.16(a and b). The effect of bending
stiffness does not make any significant difference for the inertia jet and produces smallerxend for the
viscous jet.

The model with air drag fromYarin (1993, p. 54) also does not explain the differences in jet shapes
(see Figs17and18). The air drag is modelled by adding the term

−
1

2
CNρairv

2π drs,
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FIG. 15. The jet shapes from the model with surface tension, from our model (grey, dashed line) and from the experiments from
Sequence 1.

FIG. 16. The jet shapes from the model with bending stiffness, from our model (grey, dashed line) and from the experiments from
Sequence 1.

to the right-hand side of the conservation of momentum (3.2). Here,ρair is the air density,CN is the drag
coefficient andd is the jet diameter. The valueCN is usually obtained heuristically; see, for example,
Salamone, 1996, p. 4070 andNakajimaet al., 1994, p. 43. To illustrate the influence of the air drag we
present the jet shapes for several values ofCN . For small values ofCN , the jet shape remains concave
for the inertial jet and convex for the viscous jet (see Figs17and18). With increasingCN for the viscous
and inertial jets, the inertia starts to dominate at the nozzle and viscosity at the belt, so the jet becomes
aligned with the nozzle and concave near the nozzle, and convex near the belt. At the point whereξ = 0
the jet is vertical. However, changingCN does not provide us with a better fit between the jet shapes
obtained from the model with air drag and from the experiments.

We conclude that our experiments confirm the existence of the three flow regimes and the positions
of the interfaces that we found analytically. In this respect, these experiments can be seen as a proof of
principle for our choice of boundary conditions for each regime. However, a comparison between the
jet shapes computed with our model and those found experimentally has shown a quantitative difference
between our model predictions and the experiments for the jets in the viscous and inertial regimes.
Including effects of surface tension, air drag or bending stiffness alone does not explain the difference
between the jet shapes obtained theoretically and experimentally.

To improve the agreement between the model and the experiment, we propose to change the exper-
imental setup and include more effects in the model. Experiments should be done with different fluids
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FIG. 17. The inertial jet shapes obtained from the model with air drag and from the experiment from Sequence 1 andvbelt =
0.81 m/s. The dimensionless drag coefficientCN has values 0, 5, 10 and 20. The solid dots indicate the positions in whichξ = 0
and the jets are vertical.

FIG. 18. The viscous jet shapes obtained from the model with air drag and from the experiment Sequence 1 andvbelt = 4.398 m/s.
The dimensionless drag coefficientCN has values 0, 1, 3 and 20. The solid dots indicate the positions in whichξ = 0 and the jets
are vertical.

with varying viscosity. Measuring airflow and/or using air baffles would be of additional improvement.
The model could be improved by considering a viscoelastic constitutive law for the fluid and including
a transversal air flow.

8. Summary of the three flow regimes

Using our knowledge about the three flow regimes from the model and the experiments, we describe
typical features of each flow regime. In the model, the three flow regimes are characterized by the
sign of the dimensionless variableξ . The value ofξ represents the momentum transfer through a cross
section of the jet and describes the balance between the inertia and viscous terms in the conservation
of momentum equation (3.5). Flow characterization using experimental jet shape features is possible as
well. Below, we describe each flow regime separately

• Inertial flow. In this flow regime,ξ is positive. This means that the momentum transfer due to inertia
is larger than that due to viscosity. This is reflected in the concave shape (disregarding a small
bending or unsteady region near the belt) of the jet comparable to a ballistic trajectory and aligned
with the nozzle orientation.

• Viscous-inertial flow. In this flow regime,ξ changes sign from negative near the nozzle to positive
near the belt. Hence, the momentum transfer due to viscosity is larger near the nozzle and the one
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due to inertia is so near the belt. The belt and nozzle orientations are now irrelevant for the jet shape,
which is straight vertical in the experiments (except a possible bending region near the nozzle and
bending or unstable region near the belt) as well as in the model.

• Viscous flow.In this flow regime,ξ is negative, which means that the momentum transfer due to
viscosity is larger than that due to inertia. Both in the experiments and the model the jet shape is
convex (disregarding a small bending region near the nozzle in the experiment) and the jet touches
the belt tangentially.

Summarizing, we conclude that the flow regimes can be characterized by the sign of the momentum
transfer through the cross section of the jet or by the convexity of the jet shape. However, forαnozzle =
π/2, the inertial jet shape is vertical, which makes it then impossible to distinguish between the inertial
and viscous-inertial flow regimes. Moreover, other shape features such as the tangency condition at the
belt for the viscous flow, and the relevance of the nozzle orientation for the inertial flow can be used to
distinguish these flow regimes.

9. Conclusions and discussion

In this paper, we have studied the problem of the fall of a jet of viscous fluid onto a moving belt. Three
flow regimes of the jet are distinguished and characterized by the dominant effect in the momentum
transfer through a cross section of the jet, i.e. inertial, viscous-inertial and viscous.

We have modelled the jet using a thin-jet approximation (string model) including the effects of
inertia, viscous tension and gravity. The model consists of the stationary conservation laws for mass and
momentum. A change of the independent variable is made to allow for a transformation of the model
equations into an algebraic equation. The partitioning of the parameter space between the three flow
regimes is evaluated in terms of three dimensionless numbers.

The model shows that the sign of the momentum transfer through a cross section of the jet deter-
mines the corresponding flow regime. For each flow regime, the correct boundary condition for the
jet orientation is derived by looking at the characteristics of the dynamic conservation of momentum
equation. These boundary conditions for the jet orientation are

1. the nozzle orientation for the inertial jet,

2. no boundary condition for the viscous-inertial jet,

3. the tangency of the jet at the belt for the viscous jet.

The missing boundary condition for the viscous-inertial jet is replaced by the constraint that at the point
where the momentum transfer equals zero the jet is aligned with the vertical direction of gravity.

It is shown that a continuous transition between the inertial and the viscous jets is only possible via
the viscous-inertial one. Also the way how the dimensional parameters should be changed in order to
leave the viscous or inertial jet region is indicated.

Experimental results for the positions of the touchdown points as a function ofvbelt prove the exis-
tence of three regimes and the experimentally obtained positions of the interfaces between these regimes
correspond to those obtained analytically. The jet shape comparison reveals a significant difference be-
tween the theory and the experiments. Including surface tension, air drag or bending stiffness in the
model does not explain the difference.
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